219 research outputs found
Meiotic recombination proteins localize to linear elements in Schizosaccharomyces pombe
Peer reviewedPostprin
University IP: The University as Coordinator of the Team Production Process
This Article focuses on intellectual property (IP) issues in the university setting. Often, universities require faculty who have been hired in whole or in part to invent to assign inventions created within the scope of their employment to the university. In addition, the most effective way to secure compliance with the Bayh-Dole Act, which deals with ownership of inventions involving federally funded research, is for the university to take title to such inventions. Failure to specify who has title can result in title passing to the government. Once the university asserts ownership, it then decides whether to process a patent application, and if it does, whether to pursue options for commercialization—frequently including licensing the invention to industry.
A number of academics and other commentators have contended that it would be more efficient and fair to allow faculty to own the rights to their own inventions, even if they have been hired in part to invent and the inventions are created within the scope of employment. The debate, it should be noted, is only over the appropriate default rule. Not even critics of the current institutional default rule would object to faculty assignment of ownership rights to the university. Since faculty are not generally in a good position to pursue commercialization on their own, the question for public policy is whether the university or some other entity should, in the first instance, manage the commercialization process.
This Article evaluates the case for changing the ownership default rule. First, we provide background on patent rights in the employment setting and how patent rights are applied in a university environment. Second, we explain how most universities handle faculty inventions and technology transfer. Third, we lay out and challenge some of the key arguments critics have offered in support of faculty control of patent rights. Finally, we suggest that faculty inventions that use university resources, including personnel such as graduate and postdoctoral students, are best viewed as a product of a team production process rather than solely as the invention of the faculty member and that the university generally is the more efficient manager of commercialization efforts
Heat capacity of -GaN: Isotope Effects
Until recently, the heat capacity of GaN had only been measured for
polycrystalline powder samples. Semiempirical as well as
\textit{first-principles} calculations have appeared within the past few years.
We present in this article measurements of the heat capacity of hexagonal
single crystals of GaN in the 20-1400K temperature range. We find that our data
deviate significantly from the literature values for polycrystalline materials.
The dependence of the heat capacity on the isotopic mass has also been
investigated recently for monatomic crystals such as diamond, silicon, and
germanium. Multi-atomic crystals are expected to exhibit a different dependence
of these heat capacities on the masses of each of the isotopes present. These
effects have not been investigated in the past. We also present
\textit{first-principles} calculations of the dependence of the heat capacities
of GaN, as a canonical binary material, on each of the Ga and N masses. We show
that they are indeed different, as expected from the fact that the Ga mass
affects mainly the acoustic, that of N the optic phonons. It is hoped that
these calculations will encourage experimental measurements of the dependence
of the heat capacity on isotopic masses in binary and more complex
semiconductors.Comment: 12 pages, 5 Figures, submitted to PR
Ectopic expression of the beta-cell specific transcription factor Pdx1 inhibits glucagon gene transcription
Aims/hypothesis: The transcription factor Pdx1 is required for the development and differentiation of all pancreatic cells. Beta-cell specific inactivation of Pdx1 in developing or adult mice leads to an increase in glucagon-expressing cells, suggesting that absence of Pdx1could favour glucagon gene expression by a default mechanism. Method: We investigated the inhibitory role of Pdx1 on glucagon gene expression in vitro. The glucagonoma cell line InR1G9 was transduced with a Pdx1-encoding lentiviral vector and insulin and glucagon mRNA levels were analysed by northern blot and real-time PCR. To understand the mechanism by which Pdx1 inhibits glucagon gene expression, we studied its effect on glucagon promoter activity in non-islet cells using transient transfections and gel-shift analysis. Results: In glucagonoma cells transduced with a Pdx1-encoding lentiviral vector, insulin gene expression was induced while glucagon mRNA levels were reduced by 50 to 60%. In the heterologous cell line BHK-21, Pdx1 inhibited by 60 to 80% the activation of the α-cell specific element G1 conferred by Pax-6 and/or Cdx-2/3. Although Pdx1 could bind three AT-rich motifs within G1, two of which are binding sites for Pax-6 and Cdx-2/3, the affinity of Pdx1 for G1 was much lower as compared to Pax-6. In addition, Pdx1 inhibited Pax-6 mediated activation through G3, to which Pdx1 was unable to bind. Moreover, a mutation impairing DNA binding of Pdx1 had no effect on its inhibition on Cdx-2/3. Since Pdx1 interacts directly with Pax-6 and Cdx-2/3 forming heterodimers, we suggest that Pdx1 inhibits glucagon gene transcription through protein to protein interactions with Pax-6 and Cdx-2/3. Conclusion/interpretation: Cell-specific expression of the glucagon gene can only occur when Pdx1 expression extinguishes from the early α cell precurso
Reversal of the Charge Transfer between Host and Dopant Atoms in Semiconductor Nanocrystals
We present ab initio density functional calculations that show P (Al) dopant
atoms in small hydrogen-terminated Si crystals to be negatively (positively)
charged. These signs of the dopant charges are reversed relative to the same
dopants in bulk Si. We predict this novel reversal of the dopant charge (and
electronic character of the doping) to occur at crystal sizes of order 100 Si
atoms. We explain it as a result of competition between fundamental principles
governing charge transfer in bulk semiconductors and molecules and predict it
to occur in nanocrystals of most semiconductors.Comment: 4 pages, 4 figures (3 in color), 2 table
Nickel: A very fast diffuser in silicon
Nickel is increasingly used in both IC and photovoltaic device fabrication, yet it has the potential to create highly recombination-active precipitates in silicon. For nearly three decades, the accepted nickel diffusivity in silicon has been DNi(T)=2.3×10exp−3 exp(−0.47 eV/kBT) cm2/s, a surprisingly low value given reports of rapid nickel diffusion in industrial applications. In this paper, we employ modern experimental methods to measure the higher nickel diffusivity DNi(T)=(1.69±0.74)×10exp−4 exp(−0.15±0.04 eV/kBT) cm2/s. The measured activation energy is close to that predicted by first-principles theory using the nudged-elastic-band method. Our measured diffusivity of nickel is higher than previously published values at temperatures below 1150 °C, and orders of magnitude higher when extrapolated to room temperature.Peer reviewe
Infrared activity of hydrogen molecules trapped in Si
The rovibrational-translational states of a hydrogen molecule moving in a cage site in Si, when subjected to an electrical field arising from its surroundings, are investigated. The wave functions are expressed in terms of basis functions consisting of the eigenfunctions of the molecule confined to move in the cavity and rovibrational states of the free molecule. The energy levels, intensities of infrared and Raman transitions, effects of uniaxial stress, and a neighboring oxygen defect are found and compared with existing experimental data
An enhanced workflow for variant interpretation in UniProtKB/Swiss-Prot improves consistency and reuse in ClinVar.
Personalized genomic medicine depends on integrated analyses that combine genetic and phenotypic data from individual patients with reference knowledge of the functional and clinical significance of sequence variants. Sources of this reference knowledge include the ClinVar repository of human genetic variants, a community resource that accepts submissions from external groups, and UniProtKB/Swiss-Prot, an expert-curated resource of protein sequences and functional annotation. UniProtKB/Swiss-Prot provides knowledge on the functional impact and clinical significance of over 30 000 human protein-coding sequence variants, curated from peer-reviewed literature reports. Here we present a pilot study that lays the groundwork for the integration of curated knowledge of protein sequence variation from UniProtKB/Swiss-Prot with ClinVar. We show that existing interpretations of variant pathogenicity in UniProtKB/Swiss-Prot and ClinVar are highly concordant, with 88% of variants that are common to the two resources having interpretations of clinical significance that agree. Re-curation of a subset of UniProtKB/Swiss-Prot variants according to American College of Medical Genetics and Genomics (ACMG) guidelines using ClinGen tools further increases this level of agreement, mainly due to the reclassification of supposedly pathogenic variants as benign, based on newly available population frequency data. We have now incorporated ACMG guidelines and ClinGen tools into the UniProt Knowledgebase (UniProtKB) curation workflow and routinely submit variant data from UniProtKB/Swiss-Prot to ClinVar. These efforts will increase the usability and utilization of UniProtKB variant data and will facilitate the continuing (re-)evaluation of clinical variant interpretations as data sets and knowledge evolve
- …