2,786 research outputs found

    The evolution problem associated with eigenvalues of the Hessian

    Full text link
    In this paper we study the evolution problem {ut(x,t)λj(D2u(x,t))=0,in Ω×(0,+),u(x,t)=g(x,t),on Ω×(0,+),u(x,0)=u0(x),in Ω, \left\lbrace\begin{array}{ll} u_t (x,t)- \lambda_j(D^2 u(x,t)) = 0, & \text{in } \Omega\times (0,+\infty), \\ u(x,t) = g(x,t), & \text{on } \partial \Omega \times (0,+\infty), \\ u(x,0) = u_0(x), & \text{in } \Omega, \end{array}\right. where Ω\Omega is a bounded domain in RN\mathbb{R}^N (that verifies a suitable geometric condition on its boundary) and λj(D2u)\lambda_j(D^2 u) stands for the jj-st eigenvalue of the Hessian matrix D2uD^2u. We assume that u0u_0 and gg are continuous functions with the compatibility condition u0(x)=g(x,0)u_0(x) = g(x,0), xΩx\in \partial \Omega. We show that the (unique) solution to this problem exists in the viscosity sense and can be approximated by the value function of a two-player zero-sum game as the parameter measuring the size of the step that we move in each round of the game goes to zero. In addition, when the boundary datum is independent of time, g(x,t)=g(x)g(x,t) =g(x), we show that viscosity solutions to this evolution problem stabilize and converge exponentially fast to the unique stationary solution as tt\to \infty. For j=1j=1 the limit profile is just the convex envelope inside Ω\Omega of the boundary datum gg, while for j=Nj=N it is the concave envelope. We obtain this result with two different techniques: with PDE tools and and with game theoretical arguments. Moreover, in some special cases (for affine boundary data) we can show that solutions coincide with the stationary solution in finite time (that depends only on Ω\Omega and not on the initial condition u0u_0)

    Magnetic-field-dependent quasiparticle energy relaxation in mesoscopic wires

    Full text link
    In order to find out if magnetic impurities can mediate interactions between quasiparticles in metals, we have measured the effect of a magnetic field B on the energy distribution function f(E) of quasiparticles in two silver wires driven out-of-equilibrium by a bias voltage U. In a sample showing sharp distributions at B=0, no magnetic field effect is found, whereas in the other sample, rounded distributions at low magnetic field get sharper as B is increased, with a characteristic field proportional to U. Comparison is made with recent calculations of the effect of magnetic-impurities-mediated interactions taking into account Kondo physics.Comment: 4 pages, 3 figures, to be published in Physical Review Letter

    Influence of Magnetic Field on Effective Electron-Electron Interactions in a Copper Wire

    Full text link
    We have measured in a copper wire the energy exchange rate between quasiparticles as a function of the applied magnetic field. We find that the effective electron-electron interaction is strongly modified by the magnetic field, suggesting that magnetic impurities play a role on the interaction processes.Comment: latex anthore.tex, 8 files, 6 figures, 7 pages in: Proceedings of the XXXVIth Rencontres de Moriond `Electronic Correlations: From Meso- to Nano-physics' Les Arcs, France January 20-27, 2001 [SPEC-S01/027

    Supercurrent Spectroscopy of Andreev States

    Full text link
    We measure the excitation spectrum of a superconducting atomic contact. In addition to the usual continuum above the superconducting gap, the single particle excitation spectrum contains discrete, spin-degenerate Andreev levels inside the gap. Quasiparticle excitations are induced by a broadband on-chip microwave source and detected by measuring changes in the supercurrent flowing through the atomic contact. Since microwave photons excite quasiparticles in pairs, two types of transitions are observed: Andreev transitions, which consists of putting two quasiparticles in an Andreev level, and transitions to odd states with a single quasiparticle in an Andreev level and the other one in the continuum. In contrast to absorption spectroscopy, supercurrent spectroscopy allows detection of long-lived odd states.Comment: typos correcte

    Exciting Andreev pairs in a superconducting atomic contact

    Get PDF
    The Josephson effect describes the flow of supercurrent in a weak link, such as a tunnel junction, nanowire, or molecule, between two superconductors. It is the basis for a variety of circuits and devices, with applications ranging from medicine to quantum information. Currently, experiments using Josephson circuits that behave like artificial atoms are revolutionizing the way we probe and exploit the laws of quantum physics. Microscopically, the supercurrent is carried by Andreev pair states, which are localized at the weak link. These states come in doublets and have energies inside the superconducting gap. Existing Josephson circuits are based on properties of just the ground state of each doublet and so far the excited states have not been directly detected. Here we establish their existence through spectroscopic measurements of superconducting atomic contacts. The spectra, which depend on the atomic configuration and on the phase difference between the superconductors, are in complete agreement with theory. Andreev doublets could be exploited to encode information in novel types of superconducting qubits.Comment: Submitted to Natur

    Phase controlled superconducting proximity effect probed by tunneling spectroscopy

    Get PDF
    Using a dual-mode STM-AFM microscope operating below 50mK we measured the Local Density of States (LDoS) along small normal wires connected at both ends to superconductors with different phases. We observe that a uniform minigap can develop in the whole normal wire and in the superconductors near the interfaces. The minigap depends periodically on the phase difference. The quasiclassical theory of superconductivity applied to a simplified 1D model geometry accounts well for the data.Comment: Accepted for publication in Physical Review Letter

    High-gain weakly nonlinear flux-modulated Josephson parametric amplifier using a SQUID-array

    Get PDF
    We have developed and measured a high-gain quantum-limited microwave parametric amplifier based on a superconducting lumped LC resonator with the inductor L including an array of 8 superconducting quantum interference devices (SQUIDs). This amplifier is parametrically pumped by modulating the flux threading the SQUIDs at twice the resonator frequency. Around 5 GHz, a maximum gain of 31 dB, a product amplitude-gain x bandwidth above 60 MHz, and a 1 dB compression point of -123 dBm at 20 dB gain are obtained in the non-degenerate mode of operation. Phase sensitive amplification-deamplification is also measured in the degenerate mode and yields a maximum gain of 37 dB. The compression point obtained is 18 dB above what would be obtained with a single SQUID of the same inductance, due to the smaller nonlinearity of the SQUID array.Comment: 7 pages, 4 figures, 23 reference
    corecore