9 research outputs found
FLAgellum Member 8 modulates extravascular distribution of African trypanosomes
In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites’ development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin
Seafood Consumption, Omega-3 Fatty Acids Intake, and Life-Time Prevalence of Depression in the PREDIMED-Plus Trial
Background: The aim of this analysis was to ascertain the type of relationship between fish
and seafood consumption, omega-3 polyunsaturated fatty acids (ω-3 PUFA) intake, and depression
prevalence. Methods: Cross-sectional analyses of the PREDIMED-Plus trial. Fish and seafood
consumption and ω-3 PUFA intake were assessed through a validated food-frequency questionnaire.
Self-reported life-time medical diagnosis of depression or use of antidepressants was considered
as outcome. Depressive symptoms were collected by the Beck Depression Inventory-II. Logistic
regression models were used to estimate the association between seafood products and ω-3 PUFA
consumption and depression. Multiple linear regression models were fitted to assess the association
between fish and long-chain (LC) ω-3 PUFA intake and depressive symptoms. Results: Out of
6587 participants, there were 1367 cases of depression. Total seafood consumption was not associated
with depression. The odds ratios (ORs) (95% confidence intervals (CIs)) for the 2nd, 3rd, and 4th
quintiles of consumption of fatty fish were 0.77 (0.63–0.94), 0.71 (0.58–0.87), and 0.78 (0.64–0.96),
respectively, and p for trend = 0.759. Moderate intake of total LC ω-3 PUFA (approximately
0.5–1 g/day) was significantly associated with a lower prevalence of depression. Conclusion: In our
study, moderate fish and LC ω-3 PUFA intake, but not high intake, was associated with lower odds
of depression suggesting a U-shaped relationship
Animal models of neglected parasitic diseases: In vivo multimodal imaging of experimental trypanosomatid infections
International audienceAfrican trypanosomiases and leishmaniases are significant neglected tropical diseases (NTDs) that affect millions globally, with severe health and socio-economic consequences, especially in endemic regions. Understanding the pathogenesis and dissemination of Trypanosoma brucei and Leishmania spp. parasites within their hosts is pivotal for the development of effective interventions. Whole-body bioluminescence and fluorescence imaging systems (BLI and FLI, respectively), are powerful tools to visualize and quantify the progression and distribution of these parasites in real-time within live animal models. By combining this technology with the engineering of stable T. brucei and Leishmania spp. strains expressing luciferase and/or fluorescent proteins, crucial aspects of the infection process including the parasites' homing, the infection dynamics, the tissue tropism, or the efficacy of experimental treatments and vaccines can be deeply investigated. This methodology allows for enhanced sensitivity and resolution, elucidating previously unrecognized infection niches and dynamics. Importantly, whole-body in vivo imaging is non-invasive, enabling for longitudinal studies during the course of an infection in the same animal, thereby aligning with the “3Rs” principle of animal research. Here, we detail a protocol for the generation of dual-reporter T. brucei and L. major, and their use to infect mice and follow the spatiotemporal dynamics of infection by in vivo imaging systems. Additionally, 3D micro-computed tomography (μCT) coupled to BLI in T. brucei-infected animals is applied to gain insights into the anatomical parasite distribution. This Chapter underscores the potential of these bioimaging modalities as indispensable tools in parasitology, paving the way for novel therapeutic strategies and deeper insights into host-parasite interactions
In Vitro Antiparasitic Activities of Monovalent Ionophore Compounds for Human and Canine Leishmaniases
The leishmaniases are vector-borne parasitic diseases affecting humans and animals, with high mortality rates in endemic countries. Infected dogs represent the main reservoir of infection. Disease control is mainly based on chemotherapy, which, at present, shows serious drawbacks both in humans and dogs. Therefore, the discovery or repurposing of new treatments is mandatory. Here, three monovalent ionophores (salinomycin, monensin, nigericin) were tested against promastigotes of Leishmania (L.) infantum, Leishmania tropica, and Leishmania braziliensis, and against amastigotes of L. infantum within human and, for the first time, canine macrophages. All three drugs were leishmanicidal against all Leishmania spp. promastigotes with IC50 values between 7.98 and 0.23 µM. Monensin and nigericin showed IC50 values 50 > 4 µM). Notably, the ionophores killed L. infantum amastigotes within human THP-1 cells with IC50 values ranging from 1.67 to 1.93 µM, but they only reduced by 27–37% the parasite burden in L. infantum-infected canine macrophages, showing a host-specific efficacy. Moreover, a selective higher toxicity against canine macrophages was observed. Overall, repurposed ionophores have the potential to be further investigated as anti-Leishmania agents, but different drug options may be required to tackle human or canine leishmaniases
FLAgellum Member 8 modulates extravascular distribution of African trypanosomes.
In the mammalian host, the biology of tissue-dwelling Trypanosoma brucei parasites is not completely understood, especially the mechanisms involved in their extravascular colonization. The trypanosome flagellum is an essential organelle in multiple aspects of the parasites' development. The flagellar protein termed FLAgellar Member 8 (FLAM8) acts as a docking platform for a pool of cyclic AMP response protein 3 (CARP3) that is involved in signaling. FLAM8 exhibits a stage-specific distribution suggesting specific functions in the mammalian and vector stages of the parasite. Analyses of knockdown and knockout trypanosomes in their mammalian forms demonstrated that FLAM8 is not essential in vitro for survival, growth, motility and stumpy differentiation. Functional investigations in experimental infections showed that FLAM8-deprived trypanosomes can establish and maintain an infection in the blood circulation and differentiate into insect transmissible forms. However, quantitative bioluminescence imaging and gene expression analysis revealed that FLAM8-null parasites exhibit a significantly impaired dissemination in the extravascular compartment, that is restored by the addition of a single rescue copy of FLAM8. In vitro trans-endothelial migration assays revealed significant defects in trypanosomes lacking FLAM8. FLAM8 is the first flagellar component shown to modulate T. brucei distribution in the host tissues, possibly through sensing functions, contributing to the maintenance of extravascular parasite populations in mammalian anatomical niches, especially in the skin
Antiparasitic Drugs against SARS-CoV-2: A Comprehensive Literature Survey
More than two years have passed since the viral outbreak that led to the novel infectious respiratory disease COVID-19, caused by the SARS-CoV-2 coronavirus. Since then, the urgency for effective treatments resulted in unprecedented efforts to develop new vaccines and to accelerate the drug discovery pipeline, mainly through the repurposing of well-known compounds with broad antiviral effects. In particular, antiparasitic drugs historically used against human infections due to protozoa or helminth parasites have entered the main stage as a miracle cure in the fight against SARS-CoV-2. Despite having demonstrated promising anti-SARS-CoV-2 activities in vitro, conflicting results have made their translation into clinical practice more difficult than expected. Since many studies involving antiparasitic drugs are currently under investigation, the window of opportunity might be not closed yet. Here, we will review the (controversial) journey of these old antiparasitic drugs to combat the human infection caused by the novel coronavirus SARS-CoV-2
Multiplex array analysis of circulating cytokines and chemokines in COVID-19 patients during the first wave of the SARS-CoV-2 pandemic in Milan, Italy
Abstract Background The systemic inflammatory syndrome called “cytokine storm” has been described in COVID-19 pathogenesis, contributing to disease severity. The analysis of cytokine and chemokine levels in the blood of 21 SARS-CoV-2 positive patients throughout the phases of the pandemic has been studied to understand immune response dysregulation and identify potential disease biomarkers for new treatments. The present work reports the cytokine and chemokine levels in sera from a small cohort of individuals primarily infected with SARS-CoV-2 during the first wave of the COVID-19 pandemic in Milan (Italy). Results Among the 27 cytokines and chemokines investigated, a significant higher expression of Interleukin-9 (IL-9), IP-10 (CXCL10), MCP-1 (CCL2) and RANTES (CCL-5) in infected patients compared to uninfected subjects was observed. When the change in cytokine/chemokine levels was monitored over time, from the hospitalization day to discharge, only IL-6 and IP-10 showed a significant decrease. Consistent with these findings, a significant negative correlation was observed between IP-10 and anti-Spike IgG antibodies in infected individuals. In contrast, IL-17 was positively correlated with the production of IgG against SARS-CoV-2. Conclusions The cytokine storm and the modulation of cytokine levels by SARS-CoV-2 infection are hallmarks of COVID-19. The current global immunity profile largely stems from widespread vaccination campaigns and previous infection exposures. Consequently, the immunological features and dynamic cytokine profiles of non-vaccinated and primarily-infected subjects reported here provide novel insights into the inflammatory immune landscape in the context of SARS-CoV-2 infection, and offer valuable knowledge for addressing future viral infections and the development of novel treatments
A multi-adenylate cyclase regulator at the flagellar tip controls African trypanosome transmission
International audienceAbstract Signaling from ciliary microdomains controls developmental processes in metazoans. Trypanosome transmission requires development and migration in the tsetse vector alimentary tract. Flagellar cAMP signaling has been linked to parasite social motility (SoMo) in vitro, yet uncovering control of directed migration in fly organs is challenging. Here we show that the composition of an adenylate cyclase (AC) complex in the flagellar tip microdomain is essential for tsetse salivary gland (SG) colonization and SoMo. Cyclic AMP response protein 3 (CARP3) binds and regulates multiple AC isoforms. CARP3 tip localization depends on the cytoskeletal protein FLAM8. Re-localization of CARP3 away from the tip microdomain is sufficient to abolish SoMo and fly SG colonization. Since intrinsic development is normal in carp3 and flam8 knock-out parasites, AC complex-mediated tip signaling specifically controls parasite migration and thereby transmission. Participation of several developmentally regulated receptor-type AC isoforms may indicate the complexity of the in vivo signals perceived
Recommended from our members
Effects of pre-operative isolation on postoperative pulmonary complications after elective surgery: an international prospective cohort study an international prospective cohort study
We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05–1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4–7 days or ≥ 8 days of 1.25 (1.04–1.48), p = 0.015 and 1.31 (1.11–1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care. We aimed to determine the impact of pre-operative isolation on postoperative pulmonary complications after elective surgery during the global SARS-CoV-2 pandemic. We performed an international prospective cohort study including patients undergoing elective surgery in October 2020. Isolation was defined as the period before surgery during which patients did not leave their house or receive visitors from outside their household. The primary outcome was postoperative pulmonary complications, adjusted in multivariable models for measured confounders. Pre-defined sub-group analyses were performed for the primary outcome. A total of 96,454 patients from 114 countries were included and overall, 26,948 (27.9%) patients isolated before surgery. Postoperative pulmonary complications were recorded in 1947 (2.0%) patients of which 227 (11.7%) were associated with SARS-CoV-2 infection. Patients who isolated pre-operatively were older, had more respiratory comorbidities and were more commonly from areas of high SARS-CoV-2 incidence and high-income countries. Although the overall rates of postoperative pulmonary complications were similar in those that isolated and those that did not (2.1% vs 2.0%, respectively), isolation was associated with higher rates of postoperative pulmonary complications after adjustment (adjusted OR 1.20, 95%CI 1.05–1.36, p = 0.005). Sensitivity analyses revealed no further differences when patients were categorised by: pre-operative testing; use of COVID-19-free pathways; or community SARS-CoV-2 prevalence. The rate of postoperative pulmonary complications increased with periods of isolation longer than 3 days, with an OR (95%CI) at 4–7 days or ≥ 8 days of 1.25 (1.04–1.48), p = 0.015 and 1.31 (1.11–1.55), p = 0.001, respectively. Isolation before elective surgery might be associated with a small but clinically important increased risk of postoperative pulmonary complications. Longer periods of isolation showed no reduction in the risk of postoperative pulmonary complications. These findings have significant implications for global provision of elective surgical care