20 research outputs found

    Technology Assessment and Experimentation Plan

    Get PDF
    An assessment is given of the critical and enhancing technologies necessary to build the basic personal terminal (BPT), the supplier, and the Network Management Center (NMC). The experimentation plan for testing the Personal Access Satellite System (PASS) utilizing ACTS is detailed. The experiment plan gives a list of candidate experiments and describes the proposed experimental set-up. ACTS will be used in the Microwave Switch Matrix (MSM) mode. The Microwave Switch Matrix - Link Evaluation Terminal (MSM-LET) at the NASA Lewis Research Center will serve as the microwave front-end for the PASS supplier and the NMC. Link budgets are given for both the forward and return links between the supplier and the basic personal terminal. The equipment required for the experiments is identified

    Antenna Beam Coverage Concepts

    Get PDF
    The strawman Personal Access Satellite System (PASS) design calls for the use of a CONUS beam for transmission between the supplier and the satellite and for fixed beams for transmission between the basic personal terminal and the satellite. The satellite uses a 3 m main reflector for transmission at 20 GHz and a 2 m main reflector for reception at 30 GHz. There are several types of spot beams under consideration for the PASS system besides fixed beams. The beam pattern of a CONUS coverage switched beam is shown along with that of a scanning beam. A switched beam refers to one in which the signal from the satellite is connected alternatively to various feed horns. Scanning beams are taken to mean beams whose footprints are moved between contiguous regions in the beam's coverage area. The advantages and disadvantages of switched and/or scanning beams relative to fixed beams. The consequences of using switched/scanning in lieu of fixed beams in the PASS design and attempts are made to evaluate the listed advantages and disadvantages. Two uses of switched/scanning beams are examined. To illustrate the implications of switched beams use on PASS system design, operation at two beam scan rates is explored

    Use of elliptical orbits for a Ka-band personal access satellite system

    Get PDF
    The use of satellites in elliptical orbits for a Ka-band personal communications system application designed to provide voice and data service within the continental U.S. is examined. The impact of these orbits on system parameters such as signal carrier-to-noise ratio, roundtrip delay, Doppler shift, and satellite antenna size is quantized for satellites in two elliptical orbits, the Molniya and the ACE orbits. The number of satellites necessary for continuous CONUS coverage has been determined for the satellites in these orbits. The increased system complexity brought about by the use of satellites at such altitudes is discussed

    Experiments for Ka-band mobile applications: The ACTS mobile terminal

    Get PDF
    To explore the potential of Ka-band to support mobile satellite services, the Jet Propulsion Laboratory (JPL) has initiated the design and development of a Ka-band land-mobile terminal to be used with the Advanced Communications Technology Satellite (ACTS). The planned experimental setup with ACTS is described. Brief functional descriptions of the mobile and fixed terminals are provided. The inputs required from the propagation community to support the design activities and the planned experiments are also discussed

    Propagation-related AMT design aspects and supporting experiments

    Get PDF
    The ACTS Mobile Terminal (AMT) is presently being developed with the goal of significantly extending commercial satellite applications and their user base. A thorough knowledge of the Ka-band channel characteristics is essential to the proper design of a commercially viable system that efficiently utilizes the valuable resources. To date, only limited tests have been performed to characterize the Ka-band channel, and they have focused on the needs of fixed terminals. As part of the value of the AMT as a Ka-band test bed is its function as a vehicle through which tests specifically applicable to the mobile satellite communications can be performed. The exact propagation environment with the proper set of elevation angles, vehicle antenna gains and patterns, roadside shadowing, rain, and Doppler is encountered. The ability to measure all of the above, as well as correlate their effects with observed communication system performance, creates an invaluable opportunity to understand in depth Ka-band's potential in supporting mobile and personal communications. This paper discusses the propagation information required for system design, the setup with ACTS that will enable obtaining this information, and finally the types of experiments to be performed and data to be gathered by the AMT to meet this objective

    ACTS broadband aeronautical experiment

    Get PDF
    In the last decade, the demand for reliable data, voice, and video satellite communication links between aircraft and ground to improve air traffic control, airline management, and to meet the growing demand for passenger communications has increased significantly. It is expected that in the near future, the spectrum required for aeronautical communication services will grow significantly beyond that currently available at L-band. In anticipation of this, JPL is developing an experimental broadband aeronautical satellite communications system that will utilize NASA's Advanced Communications Technology Satellite (ACTS) as a satellite of opportunity and the technology developed under JPL's ACTS Mobile Terminal (AMT) Task to evaluate the feasibility of using K/Ka-band for these applications. The application of K/Ka-band for aeronautical satellite communications at cruise altitudes is particularly promising for several reasons: (1) the minimal amount of signal attenuation due to rain; (2) the reduced drag due to the smaller K/Ka-band antennas (as compared to the current L-band systems); and (3) the large amount of available bandwidth. The increased bandwidth available at these frequencies is expected to lead to significantly improved passenger communications - including full-duplex compressed video and multiple channel voice. A description of the proposed broadband experimental system will be presented including: (1) applications of K/Ka-band aeronautical satellite technology to U.S. industry; (2) the experiment objectives; (3) the experiment set-up; (4) experimental equipment description; and (5) industrial participation in the experiment and the benefits

    Data-Analysis System for Entry, Descent, and Landing

    Get PDF
    A report describes the Entry Descent Landing Data Analysis (EDA), which is a system of signal-processing software and computer hardware for acquiring status data conveyed by multiple-frequency-shift-keying tone signals transmitted by a spacecraft during descent to the surface of a remote planet. The design of the EDA meets the challenge of processing weak, fluctuating signals that are Doppler-shifted by amounts that are only partly predictable. The software supports both real-time and post processing. The software performs fast-Fourier-transform integration, parallel frequency tracking with prediction, and mapping of detected tones to specific events. The use of backtrack and refinement parallel-processing threads helps to minimize data gaps. The design affords flexibility to enable division of a descent track into segments, within each of which the EDA is configured optimally for processing in the face of signal conditions and uncertainties. A dynamic-lock-state feature enables the detection of signals using minimum required computing power less when signals are steadily detected, more when signals fluctuate. At present, the hardware comprises eight dual-processor personal-computer modules and a server. The hardware is modular, making it possible to increase computing power by adding computers

    >

    No full text

    All-Metal Dual-Frequency RHCP High-Gain Antenna for a Potential Europa Lander

    No full text
    corecore