734 research outputs found

    Selfish Dark Matter

    Full text link
    We present a mechanism where a particle asymmetry in one sector is used to generate an asymmetry in another sector. The two sectors are not coupled through particle number violating interactions and are not required to be in thermal contact with each other. When this mechanism is applied to baryogenesis in asymmetric dark matter models, we find that the dark matter particles can be extremely light, e.g. much lighter than an eV, and that in some cases there is no need to annihilate away the symmetric component of dark matter. We discuss a concrete realization of the mechanism with signals in direct detection, at the LHC, at BB-factories or future beam dump experiments.Comment: 18+5 pages, 2 figures; Journal version: Added references, small changes to the free-streaming length estimate

    Bounds on Cross-sections and Lifetimes for Dark Matter Annihilation and Decay into Charged Leptons from Gamma-ray Observations of Dwarf Galaxies

    Full text link
    We provide conservative bounds on the dark matter cross-section and lifetime from final state radiation produced by annihilation or decay into charged leptons, either directly or via an intermediate particle Ï•\phi. Our analysis utilizes the experimental gamma-ray flux upper limits from four Milky Way dwarf satellites: HESS observations of Sagittarius and VERITAS observations of Draco, Ursa Minor, and Willman 1. Using 90% confidence level lower limits on the integrals over the dark matter distributions, we find that these constraints are largely unable to rule out dark matter annihilations or decays as an explanation of the PAMELA and ATIC/PPB-BETS excesses. However, if there is an additional Sommerfeld enhancement in dwarfs, which have a velocity dispersion ~10 to 20 times lower than that of the local Galactic halo, then the cross-sections for dark matter annihilating through Ï•\phi's required to explain the excesses are very close to the cross-section upper bounds from Willman 1. Dark matter annihilation directly into Ï„\tau's is also marginally ruled out by Willman 1 as an explanation of the excesses, and the required cross-section is only a factor of a few below the upper bound from Draco. Finally, we make predictions for the gamma-ray flux expected from the dwarf galaxy Segue 1 for the Fermi Gamma-ray Space Telescope. We find that for a sizeable fraction of the parameter space in which dark matter annihilation into charged leptons explains the PAMELA excess, Fermi has good prospects for detecting a gamma-ray signal from Segue 1 after one year of observation.Comment: 11 pages, 4 figures. References added. Final published versio

    Altitude Performance and Operational Characteristics of an XT38-A-2 Turboprop Engine

    Get PDF
    The overall engine performance and the starting and windmilling characteristics of an XT38-A-2 turboprop engine have been investigated in the NACA Lewis altitude wind tunnel. The simulated flight conditions ranged from altitudes of 5000 to 45,000 feet at a flight Mach number of 0.30 and from Mach numbers of 0.301 to 0.557 at an altitude of 35,000 feet. The engine, equipped with a standard-area exhaust nozzle, was operated with independent control of fuel flow and propeller pitch; operation was thereby allowed over a wide range of engine conditions. Windmilling characteristics were obtained at altitudes of 15,000 feet and 35,000 feet. Analysis of the performance maps obtained at each flight condition revealed that both altitude and flight Mach number had a major effect on corrected engine variables. The large reductions in corrected shaft horsepower occurring when the altitude was increased were the result of decreases in compressor and turbine efficiencies. Windmilling engine starts were made at altitudes as high as 35,000 feet at an engine speed of 2000 rpm

    Constructing the Western Landscape: National Park Architecture

    Get PDF
    This thesis explores how National Park Architecture has helped shape this country's attitude toward the American West, nature, and tourism. In the 19th century, a specific image of the parks was constructed, which implied the ideal interaction between man and nature. Over the years, as this relationship has changed, so has the architecture. Each generation has reinterpreted the idea of what a national park represents and how it fits into American culture. The image of the parks has been carefully controlled in order to serve a particular purpose. This provides the opportunity to design a building that not only functions as a visitor center, but one that stands as a recognizable model for how to build and interact with the natural environment. This thesis addresses the existing site of the Old Faithful visitor center and the larger complex in which it is situated. While the site exists within the "wilderness" of Yellowstone National Park, it accommodates 25,000 daily visitors, and therefore, presents numerous urban challenges

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    Light dark forces at flavor factories

    Full text link
    SuperB experiment could represent an ideal environment to test a new U (1) symmetry related to light dark forces candidates. A promising discovery channel is represented by the resonant production of a boson U, followed by its decay into lepton pairs. Beyond approximations adopted in the literature, an exact tree level calculation of the radiative processes e+e−→γ,U→μ+μ−γ,e+e−γe+ e- \rightarrow \gamma, U \rightarrow \mu^+ \mu^- \gamma, e^+ e^- \gamma and corresponding QED backgrounds is performed, including also the most important higher-order corrections. The calculation is implemented in a release of the generator BabaYaga@NLO useful for data analysis and interpretation. The distinct features of U boson production are shown and the statistical significance is analysed

    Probing Dark Forces and Light Hidden Sectors at Low-Energy e+e- Colliders

    Full text link
    A dark sector -- a new non-Abelian gauge group Higgsed or confined near the GeV scale -- can be spectacularly probed in low-energy e+e- collisions. A low-mass dark sector can explain the annual modulation signal reported by DAMA/LIBRA and the PAMELA, ATIC, and INTEGRAL observations by generating small mass splittings and new interactions for weak-scale dark matter. Some of these observations may be the first signs of a low-mass dark sector that collider searches can definitively confirm. Production and decay of O(GeV)-mass dark states is mediated by a Higgsed Abelian gauge boson that mixes kinetically with hypercharge. Existing data from BaBar, BELLE, CLEO-c, and KLOE may contain thousands of striking dark-sector events with a high multiplicity of leptons that reconstruct mass resonances and possibly displaced vertices. We discuss the production and decay phenomenology of Higgsed and confined dark sectors and propose e+e- collider search strategies. We also use the DAMA/LIBRA signal to estimate the production cross-sections and decay lifetimes for dark-sector states.Comment: 42 pages, 19 figures. References and minor clarifications added. Final published versio
    • …
    corecore