534 research outputs found

    An Electron Fixed Target Experiment to Search for a New Vector Boson A' Decaying to e+e-

    Full text link
    We describe an experiment to search for a new vector boson A' with weak coupling alpha' > 6 x 10^{-8} alpha to electrons (alpha=e^2/4pi) in the mass range 65 MeV < m_A' < 550 MeV. New vector bosons with such small couplings arise naturally from a small kinetic mixing of the "dark photon" A' with the photon -- one of the very few ways in which new forces can couple to the Standard Model -- and have received considerable attention as an explanation of various dark matter related anomalies. A' bosons are produced by radiation off an electron beam, and could appear as narrow resonances with small production cross-section in the trident e+e- spectrum. We summarize the experimental approach described in a proposal submitted to Jefferson Laboratory's PAC35, PR-10-009. This experiment, the A' Experiment (APEX), uses the electron beam of the Continuous Electron Beam Accelerator Facility at Jefferson Laboratory (CEBAF) at energies of ~1-4 GeV incident on 0.5-10% radiation length Tungsten wire mesh targets, and measures the resulting e+e- pairs to search for the A' using the High Resolution Spectrometer and the septum magnet in Hall A. With a ~1 month run, APEX will achieve very good sensitivity because the statistics of e+e- pairs will be ~10,000 times larger in the explored mass range than any previous search for the A' boson. These statistics and the excellent mass resolution of the spectrometers allow sensitivity to alpha'/alpha one to three orders of magnitude below current limits, in a region of parameter space of great theoretical and phenomenological interest. Similar experiments could also be performed at other facilities, such as the Mainz Microtron.Comment: 19 pages, 12 figures, 2 table

    A Hybrid Higgs

    Get PDF
    We construct composite Higgs models admitting a weakly coupled Seiberg dual description. We focus on the possibility that only the up-type Higgs is an elementary field, while the down-type Higgs arises as a composite hadron. The model, based on a confining SQCD theory, breaks supersymmetry and electroweak symmetry dynamically and calculably. This simultaneously solves the \mu/B_\mu problem and explains the smallness of the bottom and tau masses compared to the top mass. The proposal is then applied to a class of models where the same confining dynamics is used to generate the Standard Model flavor hierarchy by quark and lepton compositeness. This provides a unified framework for flavor, supersymmetry breaking and electroweak physics. The weakly coupled dual is used to explicitly compute the MSSM parameters in terms of a few microscopic couplings, giving interesting relations between the electroweak and soft parameters. The RG evolution down to the TeV scale is obtained and salient phenomenological predictions of this class of "single-sector" models are discussed.Comment: 56 pages, 7 figures, v2: discussion on FCNCs and references added, v3: JHEP versio

    Supersymmetry phenomenology beyond the MSSM after 5/fb of LHC data

    Full text link
    We briefly review the status of motivated beyond-the-MSSM phenomenology in the light of the LHC searches to date. In particular, we discuss the conceptual consequences of the exclusion bounds, of the hint for a Higgs boson at about 125 GeV, and of interpreting the excess of direct CP violation in the charm sector as a signal of New Physics. We try to go into the various topics in a compact way while providing a relatively rich list of references, with particular attention to the most recent developments.Comment: 20 pages + refs. v2: minor modifications, published versio

    CoGeNT Interpretations

    Full text link
    Recently, the CoGeNT experiment has reported events in excess of expected background. We analyze dark matter scenarios which can potentially explain this signal. Under the standard case of spin independent scattering with equal couplings to protons and neutrons, we find significant tensions with existing constraints. Consistency with these limits is possible if a large fraction of the putative signal events is coming from an additional source of experimental background. In this case, dark matter recoils cannot be said to explain the excess, but are consistent with it. We also investigate modifications to dark matter scattering that can evade the null experiments. In particular, we explore generalized spin independent couplings to protons and neutrons, spin dependent couplings, momentum dependent scattering, and inelastic interactions. We find that some of these generalizations can explain most of the CoGeNT events without violation of other constraints. Generalized couplings with some momentum dependence, allows further consistency with the DAMA modulation signal, realizing a scenario where both CoGeNT and DAMA signals are coming from dark matter. A model with dark matter interacting and annihilating into a new light boson can realize most of the scenarios considered.Comment: 24 pages, 12 figs, v2: published version, some discussions clarifie

    Direct Detection of Electroweak-Interacting Dark Matter

    Full text link
    Assuming that the lightest neutral component in an SU(2)L gauge multiplet is the main ingredient of dark matter in the universe, we calculate the elastic scattering cross section of the dark matter with nucleon, which is an important quantity for the direct detection experiments. When the dark matter is a real scalar or a Majorana fermion which has only electroweak gauge interactions, the scattering with quarks and gluon are induced through one- and two-loop quantum processes, respectively, and both of them give rise to comparable contributions to the elastic scattering cross section. We evaluate all of the contributions at the leading order and find that there is an accidental cancellation among them. As a result, the spin-independent cross section is found to be O(10^-(46-48)) cm^2, which is far below the current experimental bounds.Comment: 19 pages, 7 figures, published versio

    The kinetic dark-mixing in the light of CoGENT and XENON100

    Full text link
    Several string or GUT constructions motivate the existence of a dark U(1)_D gauge boson which interacts with the Standard Model only through its kinetic mixing. We compute the dark matter abundance in such scenario and the constraints in the light of the recent data from CoGENT, CDMSII and XENON100. We show in particular that a region with relatively light WIMPS, M_{Z_D}< 40 GeV and a kinetic mixing 10^-4 < delta < 10^-3 is not yet excluded by the last experimental data and seems to give promising signals in a near future. We also compute the value of the kinetic mixing needed to explain the DAMA/CoGENT/CRESST excesses and find that for M_{Z_D}< 30 GeV, delta ~ 10^-3 is sufficient to fit with the data.Comment: 6 pages, 5figure

    Stop the Top Background of the Stop Search

    Get PDF
    The main background for the supersymmetric stop direct production search comes from Standard Model ttbar events. For the single-lepton search channel, we introduce a few kinematic variables to further suppress this background by focusing on its dileptonic and semileptonic topologies. All are defined to have end points in the background, but not signal distributions. They can substantially improve the stop signal significance and mass reach when combined with traditional kinematic variables such as the total missing transverse energy. Among them, our variable M^W_T2 has the best overall performance because it uses all available kinematic information, including the on-shell mass of both W's. We see 20%-30% improvement on the discovery significance and estimate that the 8 TeV LHC run with 20 fb-1 of data would be able to reach an exclusion limit of 650-700 GeV for direct stop production, as long as the stop decays dominantly to the top quark and a light stable neutralino. Most of the mass range required for the supersymmetric solution of the naturalness problem in the standard scenario can be covered.Comment: 16 pages, 5 figure

    A New Era in the Quest for Dark Matter

    Full text link
    There is a growing sense of `crisis' in the dark matter community, due to the absence of evidence for the most popular candidates such as weakly interacting massive particles, axions, and sterile neutrinos, despite the enormous effort that has gone into searching for these particles. Here, we discuss what we have learned about the nature of dark matter from past experiments, and the implications for planned dark matter searches in the next decade. We argue that diversifying the experimental effort, incorporating astronomical surveys and gravitational wave observations, is our best hope to make progress on the dark matter problem.Comment: Published in Nature, online on 04 Oct 2018. 13 pages, 1 figur

    Supersymmetry with Light Stops

    Full text link
    Recent LHC data, together with the electroweak naturalness argument, suggest that the top squarks may be significantly lighter than the other sfermions. We present supersymmetric models in which such a split spectrum is obtained through "geometries": being "close to" electroweak symmetry breaking implies being "away from" supersymmetry breaking, and vice versa. In particular, we present models in 5D warped spacetime, in which supersymmetry breaking and Higgs fields are located on the ultraviolet and infrared branes, respectively, and the top multiplets are localized to the infrared brane. The hierarchy of the Yukawa matrices can be obtained while keeping near flavor degeneracy between the first two generation sfermions, avoiding stringent constraints from flavor and CP violation. Through the AdS/CFT correspondence, the models can be interpreted as purely 4D theories in which the top and Higgs multiplets are composites of some strongly interacting sector exhibiting nontrivial dynamics at a low energy. Because of the compositeness of the Higgs and top multiplets, Landau pole constraints for the Higgs and top couplings apply only up to the dynamical scale, allowing for a relatively heavy Higgs boson, including m_h = 125 GeV as suggested by the recent LHC data. We analyze electroweak symmetry breaking for a well-motivated subset of these models, and find that fine-tuning in electroweak symmetry breaking is indeed ameliorated. We also discuss a flat space realization of the scenario in which supersymmetry is broken by boundary conditions, with the top multiplets localized to a brane while other matter multiplets delocalized in the bulk.Comment: 27 pages, 7 figure

    SUSY, the Third Generation and the LHC

    Full text link
    We develop a bottom-up approach to studying SUSY with light stops and sbottoms, but with other squarks and sleptons heavy and beyond reach of the LHC. We discuss the range of squark, gaugino and Higgsino masses for which the electroweak scale is radiatively stable over the "little hierarchy" below ~ 10 TeV. We review and expand on indirect constraints on this scenario, in particular from flavor and CP tests. We emphasize that in this context, R-parity violation is very well motivated. The phenomenological differences between Majorana and Dirac gauginos are also discussed. Finally, we focus on the light subsystem of stops, sbottom and neutralino with R-parity, in order to probe the current collider bounds. We find that 1/fb LHC bounds are mild and large parts of the motivated parameter space remain open, while the 10/fb data can be much more decisive.Comment: 42 pages, 8 figures, 1 table. V2: minor corrections, references adde
    corecore