165 research outputs found

    Role of Human and Mouse Rad54 in DNA Recombination and Repair

    Get PDF
    DNA double-strand breaks (DSBs) which can be induced by endogenously produced radicals or by ionizing radiation are among the most genotoxic DNA lesions. Repair of DSBs is of cardinal importance for the prevention of chromosomal fragmentation, translocations, and deletions. The genetic instability resulting from persistent or incorrectly repaired DSBs can eventually result in cancer. Therefore, to understand the biological consequences of exposure to ionizing radiation, insight into the mechanisms of DSB repair in mammalian cells is essential. The pace of identification of mammalian DSB repair genes has rapidly increased over the last few years. However, the functional analysis of the encoded proteins and the analysis of the role of the different DSB repair mechanisms in mammals are far from complete. This thesis describes the generation and phenotypic characterization of cells and mice, with a defect in one of the DSB repair genes, the RAD54 recombinational DNA repair gene. Furthermore, the initial characterization and cellular behavior of the mammalian Rad54 protein is described. Chapter 1 outlines the current knowledge on the role and molecular mechanisms of the multiple pathways that have evolved for the repair of DSBs. Our main findings concerning mammalian Rad54 at the protein and cellular level are discussed and integrated in the emerging picture of the DSB repair mechanisms in mammals. Chapters 2 and 3 describe the isolation of mammalian RAD54 genes and genomic characterization of the mouse RAD54 gene. Chapters 4 and 5 describe the generation and phenotypic characterization of RAD54 knockout cells and mice. Chapters 6 and 7 describe the characterization of the in vitro activities of the purified human Rad54 protein and the cellular behavior of the mouse Rad54 protein upon induction of DNA damage

    Molecular Imaging of Inflammation in Aortic Aneurysmal Disease

    Get PDF
    The high mortality rate of diseases of the aorta has its foundation in imaging methods that define anatomy and disease burden but less so upon the diagnosis of asymptomatic conditions, rate of aneurysm expansion, or prediction of rupture. However, anatomical features can now be co-localized with molecular and physiological activity. The advancement of nanoparticles based upon iron oxide will also serve to bring a trio of magnetic, radionuclide, and optical imaging modalities together. The combinations of these technologies are still at the preclinical refinement stage but already enzyme-activatable probes have b

    Multi-scale cellular imaging of DNA double strand break repair

    Get PDF
    Live-cell and high-resolution fluorescence microscopy are powerful tools to study the organization and dynamics of DNA double-strand break repair foci and specific repair proteins in single cells. This requires specific induction of DNA double-strand breaks and fluorescent markers to follow the DNA lesions in living cells. In this review, where we focused on mammalian cell studies, we discuss different methods to induce DNA double-strand breaks, how to visualize and quantify repair foci in living cells., We describe different (live-cell) imaging modalities that can reveal details of the DNA double-strand break repair process across multiple time and spatial scales. In addition, recent developments are discussed in super-resolution imaging and single-molecule tracking, and how these technologies can be applied to elucidate details on structural compositions or dynamics of DNA double-strand break repair.</p

    The human RAD54 recombinational DNA repair protein is a double-stranded DNA-dependent ATPase

    Get PDF
    DNA double-strand break repair through the RAD52 homologous recombination pathway in the yeast Saccharomyces cerevisiae requires, among others, the RAD51, RAD52, and RAD54 genes. The biological importance of homologous recombination is underscored by the conservation of the RAD52 pathway from fungi to humans. The critical roles of the RAD52 group proteins in the early steps of recombination, the search for DNA homology and strand exchange, are now becoming apparent. Here, we report the purification of the human Rad54 protein. We showed that human Rad54 has ATPase activity that is absolutely dependent on double-stranded DNA. Unexpectedly, the ATPase activity appeared not absolutely required for the DNA repair function of human Rad54 in vivo. Despite the presence of amino acid sequence motifs that are conserved in a large family of DNA helicases, no helicase activity of human Rad54 was observed on a variety of different DNA substrates. Possible functions of human Rad54 in homologous recombination that couple the energy gained from ATP hydrolysis to translocation along DNA, rather than disruption of base pairing, are discussed

    In Vivo Quantitative Assessment of Myocardial Structure, Function, Perfusion and Viability Using Cardiac Micro-computed Tomography

    Get PDF
    The use of Micro-Computed Tomography (MicroCT) for in vivo studies of small animals as models of human disease has risen tremendously due to the fact that MicroCT provides quantitative high-resolution three-dimensional (3D) anatomical data non-destructively and longitudinally. Most importantly, with the development of a novel preclinical iodinated contrast agent called eXIA160, functional and metabolic assessment of the heart became possible. However, prior to the advent of commercial MicroCT scanners equipped with X-ray flat-panel detector technology and easy-to-use cardio-respiratory gating, preclinical studies of cardiovascular disease (CVD) in small animals required a MicroCT technologist with advanced skills, and thus were impractical for widespread implementation. The goal of this work is to provide a practical guide to the use of the high-speed Quantum FX MicroCT system for comprehensive determination of myocardial global and regional function along with assessment of myocardial perfusion, metabolism and viability in healthy mice and in a cardiac ischemia mouse model induced by permanent occlusion of the left anterior descending coronary artery (LAD)

    Slc2a10 knock-out mice deficient in ascorbic acid synthesis recapitulate aspects of arterial tortuosity syndrome and display mitochondrial respiration defects

    No full text
    Arterial tortuosity syndrome (ATS) is a recessively inherited connective tissue disorder, mainly characterized by tortuosity and aneurysm formation of the major arteries. ATS is caused by loss-of-function mutations in SLC2A10, encoding the facilitative glucose transporter GLUT10. Former studies implicated GLUT10 in the transport of dehydroascorbic acid, the oxidized form of ascorbic acid (AA). Mouse models carrying homozygous Slc2a10 missense mutations did not recapitulate the human phenotype. Since mice, in contrast to humans, are able to intracellularly synthesize AA, we generated a novel ATS mouse model, deficient for Slc2a10 as well as Gulo, which encodes for L-gulonolactone oxidase, an enzyme catalyzing the final step in AA biosynthesis in mouse. Gulo;Slc2a10 double knock-out mice showed mild phenotypic anomalies, which were absent in single knock-out controls. While Gulo;Slc2a10 double knock-out mice did not fully phenocopy human ATS, histological and immunocytochemical analysis revealed compromised extracellular matrix formation. Transforming growth factor beta signaling remained unaltered, while mitochondrial function was compromised in smooth muscle cells derived from Gulo;Slc2a10 double knock-out mice. Altogether, our data add evidence that ATS is an ascorbate compartmentalization disorder, but additional factors underlying the observed phenotype in humans remain to be determined

    An MR-compatible antenna and application in a murine superficial hyperthermia applicator

    Get PDF
    In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (&lt;1 cm 3 ), has a stable and reliable performance (S 11 &lt; −15 dB) for all working conditions and is MR-compatible. </p

    RTEL1 contributes to DNA replication and repair and telomere maintenance

    Get PDF
    Telomere maintenance and DNA repair are important processes that protect the genome against instability. mRtel1, an essential helicase, is a dominant factor setting telomere length in mice. In addition, mRtel1 is involved in DNA double-strand break repair. The role of mRtel1 in telomere maintenance and genome stability is poorly understood. Therefore we used mRtel1-deficient mouse embryonic stem cells to examine the function of mRtel1 in replication, DNA repair, recombination, and telomere maintenance. mRtel1-deficient mouse embryonic stem cells showed sensitivity to a range of DNA-damaging agents, highlighting its role in replication and genome maintenance. Deletion of mRtel1 increased the frequency of sister chromatid exchange events and suppressed gene replacement, demonstrating the involvement of the protein in homologous recombination. mRtel1 localized transiently at telomeres and is needed for efficient telomere replication. Of interest, in the absence of mRtel1, telomeres in embryonic stem cells appeared relatively stable in length, suggesting that mRtel1 is required to allow extension by telomerase. We propose that mRtel1 is a key protein for DNA replication, recombination, and repair and efficient elongation of telomeres by telomerase

    Absence of cardiovascular manifestations in a haploinsufficient TGFBR1 mouse model

    Get PDF
    Loeys-Dietz syndrome (LDS) is an autosomal dominant arterial aneurysm disease belonging to the spectrum of transforming growth factor beta (TGF beta)-associated vasculopathies. In its most typical form it is characterized by the presence of hypertelorism, bifid uvula/cleft palate and aortic aneurysm and/or arterial tortuosity. LDS is caused by heterozygous loss of function mutations in the genes encoding TGF beta receptor 1 and 2 (TGFBR1 and -2), which lead to a paradoxical increase in TGF beta signaling. To address this apparent paradox and to gain more insight into the pathophysiology of aneurysmal disease, we characterized a new Tgfbr1 mouse model carrying a p.Y378* nonsense mutation. Study of the natural history in this model showed that homozygous mutant mice die during embryonic development due to defective vascularization. Heterozygous mutant mice aged 6 and 12 months were morphologically and (immuno) histochemically indistinguishable from wild-type mice. We show that the mutant allele is degraded by nonsense mediated mRNA decay, expected to result in haploinsufficiency of the mutant allele. Since this haploinsufficiency model does not result in cardiovascular malformations, it does not allow further study of the process of aneurysm formation. In addition to providing a comprehensive method for cardiovascular phenotyping in mice, the results of this study confirm that haploinsuffciency is not the underlying genetic mechanism in human LDS

    An MR-compatible antenna and application in a murine superficial hyperthermia applicator

    Get PDF
    In this work, a novel magnetic resonance (MR)-compatible microwave antenna was designed and validated in a small animal superficial hyperthermia applicator. The antenna operates at 2.45 GHz and matching is made robust against production and setup inaccuracies. To validate our theoretical concept, a prototype of the applicator was manufactured and tested for its properties concerning input reflection, sensitivity for setup inaccuracies, environment temperature stability and MR-compatibility. The experiments show that the applicator indeed fulfils the requirements for MR-guided hyperthermia investigation in small animals: it creates a small heating focus (<1 cm3), has a stable and reliable performance (S11< −15 dB) for all working conditions and is MR-compatible
    • …
    corecore