6,712 research outputs found

    Primordial Nucleosynthesis: Accurate Predictions

    Get PDF
    A new accurate evaluation of primordial light nuclei abundances is presented. The proton to neutron conversion rates have been corrected to take into account radiative effects, finite nucleon mass, thermal and plasma corrections. The theoretical uncertainty on 4He is so reduced to the order of 0.1%.Comment: 4 pages, Talk given at the International Workshop on Particles in Astrophysics and Cosmology: From Theory to Observation, Valencia 199

    Essential self-adjointness in one-loop quantum cosmology

    Full text link
    The quantization of closed cosmologies makes it necessary to study squared Dirac operators on closed intervals and the corresponding quantum amplitudes. This paper proves self-adjointness of these second-order elliptic operators.Comment: 14 pages, plain Tex. An Erratum has been added to the end, which corrects section

    The standard and degenerate primordial nucleosynthesis versus recent experimental data

    Full text link
    We report the results on Big Bang Nucleosynthesis (BBN) based on an updated code, with accuracy of the order of 0.1% on He4 abundance, compared with the predictions of other recent similar analysis. We discuss the compatibility of the theoretical results, for vanishing neutrino chemical potentials, with the observational data. Bounds on the number of relativistic neutrinos and baryon abundance are obtained by a likelihood analysis. We also analyze the effect of large neutrino chemical potentials on primordial nucleosynthesis, motivated by the recent results on the Cosmic Microwave Background Radiation spectrum. The BBN exclusion plots for electron neutrino chemical potential and the effective number of relativistic neutrinos are reported. We find that the standard BBN seems to be only marginally in agreement with the recent BOOMERANG and MAXIMA-1 results, while the agreement is much better for degenerate BBN scenarios for large effective number of neutrinos, N_\nu \sim 10.Comment: LaTeX2e, 41 pages, 20 figures. Minor changes and 4 figures slightly modifie

    Euclidean Maxwell Theory in the Presence of Boundaries. II

    Get PDF
    Zeta-function regularization is applied to complete a recent analysis of the quantized electromagnetic field in the presence of boundaries. The quantum theory is studied by setting to zero on the boundary the magnetic field, the gauge-averaging functional and hence the Faddeev-Popov ghost field. Electric boundary conditions are also studied. On considering two gauge functionals which involve covariant derivatives of the 4-vector potential, a series of detailed calculations shows that, in the case of flat Euclidean 4-space bounded by two concentric 3-spheres, one-loop quantum amplitudes are gauge independent and their mode-by-mode evaluation agrees with the covariant formulae for such amplitudes and coincides for magnetic or electric boundary conditions. By contrast, if a single 3-sphere boundary is studied, one finds some inconsistencies, i.e. gauge dependence of the amplitudes.Comment: 24 pages, plain-tex, recently appearing in Classical and Quantum Gravity, volume 11, pages 2939-2950, December 1994. The authors apologize for the delay in circulating the file, due to technical problems now fixe

    One-Loop Effective Action for Euclidean Maxwell Theory on Manifolds with Boundary

    Get PDF
    This paper studies the one-loop effective action for Euclidean Maxwell theory about flat four-space bounded by one three-sphere, or two concentric three-spheres. The analysis relies on Faddeev-Popov formalism and ζ\zeta-function regularization, and the Lorentz gauge-averaging term is used with magnetic boundary conditions. The contributions of transverse, longitudinal and normal modes of the electromagnetic potential, jointly with ghost modes, are derived in detail. The most difficult part of the analysis consists in the eigenvalue condition given by the determinant of a 2×22 \times 2 or 4×44 \times 4 matrix for longitudinal and normal modes. It is shown that the former splits into a sum of Dirichlet and Robin contributions, plus a simpler term. This is the quantum cosmological case. In the latter case, however, when magnetic boundary conditions are imposed on two bounding three-spheres, the determinant is more involved. Nevertheless, it is evaluated explicitly as well. The whole analysis provides the building block for studying the one-loop effective action in covariant gauges, on manifolds with boundary. The final result differs from the value obtained when only transverse modes are quantized, or when noncovariant gauges are used.Comment: 25 pages, Revte

    New Developments in the Spectral Asymptotics of Quantum Gravity

    Full text link
    A vanishing one-loop wave function of the Universe in the limit of small three-geometry is found, on imposing diffeomorphism-invariant boundary conditions on the Euclidean 4-ball in the de Donder gauge. This result suggests a quantum avoidance of the cosmological singularity driven by full diffeomorphism invariance of the boundary-value problem for one-loop quantum theory. All of this is made possible by a peculiar spectral cancellation on the Euclidean 4-ball, here derived and discussed.Comment: 7 pages, latex file. Paper prepared for the Conference "QFEXT05: Quantum Field Theory Under the Influence of External Conditions", Barcelona, September 5 - September 9, 2005. In the final version, the presentation has been further improved, and yet other References have been adde

    Improved Action Functionals in Non-Perturbative Quantum Gravity

    Full text link
    Models of gravity with variable G and Lambda have acquired greater relevance after the recent evidence in favour of the Einstein theory being non-perturbatively renormalizable in the Weinberg sense. The present paper builds a modified Arnowitt-Deser-Misner (ADM) action functional for such models which leads to a power-law growth of the scale factor for pure gravity and for a massless phi**4 theory in a Universe with Robertson-Walker symmetry, in agreement with the recently developed fixed-point cosmology. Interestingly, the renormalization-group flow at the fixed point is found to be compatible with a Lagrangian description of the running quantities G and Lambda.Comment: Latex file. Record without file already exists on SLAC-SPIRES, and hence that record and the one for the present arxiv submission should become one record onl
    • …
    corecore