551 research outputs found

    Classical Bianchi type I cosmology in K-essence theory

    Get PDF
    We use one of the simplest forms of the K-essence theory and we apply it to the classical anisotropic Bianchi type I cosmological model, with a barotropic perfect fluid modeling the usual matter content and with cosmological constant. The classical solutions for any but the stiff fluid and without cosmological constant are found in closed form, using a time transformation. We also present the solution whith cosmological constant and some particular values of the barotropic parameter. We present the possible isotropization of the cosmological model, using the ratio between the anisotropic parameters and the volume of the universe and show that this tend to a constant or to zero for different cases. We include also a qualitative analysis of the analog of the Friedmann equation.Comment: 15 pages with one figure, accepted in Advances in High Energy Physic

    Cosmological Bianchi Class A models in S\'aez-Ballester theory

    Get PDF
    We use the S\'aez-Ballester (SB) theory on anisotropic Bianchi Class A cosmological model, with barotropic fluid and cosmological constant, using the Hamilton or Hamilton-Jacobi approach. Contrary to claims in the specialized literature, it is shown that the S\'aez-Ballester theory cannot provide a realistic solution to the dark matter problem of Cosmology for the dust epoch, without a fine tunning because the contribution of the scalar field in this theory is equivalent to a stiff fluid (as can be seen from the energy--momentum tensor for the scalar field), that evolves in a different way as the dust component. To have similar contributions of the scalar component and the dust component implies that their past values were fine tunned. So, we reinterpreting this null result as an indication that dark matter plays a central role in the formation of structures and galaxy evolution, having measureable effects in the cosmic microwave bound radiation, and than this formalism yield to this epoch as primigenius results. We do the mention that this formalism was used recently in the so called K-essence theory applied to dark energy problem, in place to the dark matter problem. Also, we include a quantization procedure of the theory which can be simplified by reinterpreting the theory in the Einstein frame, where the scalar field can be interpreted as part of the matter content of the theory, and exact solutions to the Wheeler-DeWitt equation are found, employing the Bianchi Class A cosmological models.Comment: 24 pages; ISBN: 978-953-307-626-3, InTec

    Noncommutative effective LQC: A (pre-)inflationary dynamics investigation

    Full text link
    We conduct a (pre-)inflationary dynamics study within the framework of a simple noncommutative extension of effective loop quantum cosmology -- put forward recently by the authors -- which preserves its key features (in particular, the quantum bounce is maintained). A thorough investigation shows that the (pre-)inflationary scenario associated to the chaotic quadratic potential is in the overall the same as the one featured in standard loop quantum cosmology (which reinforces the conclusion reached by the authors in a preliminary analysis). Hence, this (pre-)inflationary scenario does not easily distinguish between standard loop quantum cosmology and the aforementioned noncommutative scheme. It is argued that a particular tuning of the noncommutativity parameter could accommodate for subtle effects at the level of primordial perturbations (the hybrid quantization framework being a tentative route of analysis).Comment: 22 pages, 18 figures, 1 tabl

    Identification of rare-earth minerals associated to K-feldspar: Capacsaya project in Peru

    Get PDF
    A recently discovered the rare-earth-rich site in Capacsaya, located at 123 km northwest of Cusco, at the south of Peru, contains significant quantities of light and heavy rare-earth elements such as neodymium, lanthanum, cerium, europium, and yttrium. This work reports the identification of rare-earth elements and their associated minerals using scanning electron microscopy, energy-dispersive X-ray spectroscopy and X-ray diffraction analyses. Five (5) samples extracted from different locations at the Capacsaya site were characterized and identified K-feldspar as the mineral associated with the rare-earth elements in a representative sample with a high concentration of lanthanum and cerium. The results showed rare-earth elements contained within the mineral phase monazite, being cerium the dominant element in the phase (La, Ce, Nd)PO4. Finally, through the electrostatic separation process we demonstrate that it was possible to achieve an efficient separation of the K-feldspar phase in the particle size range 75–150 μ m.Fil: Ochoa, J.. Universidad Nacional de Ingeniería; PerúFil: Monteblanco, E.. Commissariat A L Energie Atomique Et Aux Energies Alternatives.; FranciaFil: Cerpa, L.. Instituto Geológico Minero y Metalúrgico; PerúFil: Gutarra Espinoza, Abel. Universidad Nacional de Ingenieria; PerúFil: Aviles Felix, Luis Steven. Consejo Nacional de Investigaciones Científicas y Técnicas. Oficina de Coordinación Administrativa Ciudad Universitaria. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche | Comisión Nacional de Energía Atómica. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología. Unidad Ejecutora Instituto de Nanociencia y Nanotecnología - Nodo Bariloche; Argentin

    In vitro wearing away of orthodontic brackets and wires in different conditions: A review

    Get PDF
    Introduction: The release of metallic ions from orthodontic brackets and wires typically depends on their quality (chemical composition) and the medium to which they are exposed, e.g., acidic, alkaline, substances with a high fluoride concentration, etc. This review examines corrosion and wear of orthodontic brackets, wires, and arches exposed to different media, including: beverages (juices), mouthwashes and artificial saliva among others, and the possible health effects resulting from the release of metallic ions under various conditions. Objective: This review aims to determine the exposure conditions that cause the most wear on orthodontic devices, as well as the possible health effects that can be caused by the release of metallic ions under various conditions. Sources: A search was carried out in the Scopus database, for articles related to oral media that can corrode brackets and wires. The initial research resulted in 8,127 documents, after applying inclusion and exclusion criteria, 76 articles remained. Conclusion: Stainless steel, which is commonly used in orthodontic devices, is the material that suffers the most wear. It was also found that acidic pH, alcohols, fluorides, and chlorides worsen orthodontic material corrosion. Further, nickel released from brackets and wires can cause allergic reactions and gingival overgrowth into patients.Fil: Espinoza Montero, Patricio J.. Pontificia Universidad Católica del Ecuador; EcuadorFil: Montero Jiménez, Marjorie Elizabeth. Pontificia Universidad Católica del Ecuador; Ecuador. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - La Plata. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas. Universidad Nacional de La Plata. Facultad de Ciencias Exactas. Instituto de Investigaciones Fisicoquímicas Teóricas y Aplicadas; ArgentinaFil: Fernández, Lenys. Pontificia Universidad Católica del Ecuador; EcuadorFil: Paz, Jose Luis. Universidad Nacional Mayor de San Marcos; PerúFil: Piñeiros, José Luis. Pontificia Universidad Católica del Ecuador; EcuadorFil: Ceballos, Sandra Macías. Universidad Central del Ecuador; Ecuado
    corecore