255 research outputs found

    Semiconductor cavity QED: Bandgap induced by vacuum fluctuations

    Full text link
    We consider theoretically a semiconductor nanostructure embedded in one-dimensional microcavity and study the modification of its electron energy spectrum by the vacuum fluctuations of the electromagnetic field. To solve the problem, a non-perturbative diagrammatic approach based on the Green's function formalism is developed. It is shown that the interaction of the system with the vacuum fluctuations of the optical cavity opens gaps within the valence band of the semiconductor. The approach is verified for the case of large photon occupation numbers, proving the validity of the model by comparing to previous studies of the semiconductor system excited by a classical electromagnetic field. The developed theory is of general character and allows for unification of quantum and classical descriptions of the strong light-matter interaction in semiconductor structures

    BCS pairing in fully repulsive fermion mixtures

    Full text link
    We consider a mixture of two neutral cold Fermi gases with repulsive interactions. We show that in some region of the parameter space of the system the effective attraction between fermions of the same type can appear due to the exchange of collective excitations. This leads to the formation of BCS pairing in the case where bare inter-atomic interactions are repulsive

    Electronic and magnetic properties of graphite quantum dots

    No full text
    We study the electronic and magnetic properties of multilayer quantum dots (MQDs) of graphite in the nearest-neighbor approximation of tight-binding model. We calculate the electronic density of states and orbital susceptibility of the system as function of the Fermi level location. We demonstrate that properties of MQD depend strongly on the shape of the system, on the parity of the layer number and on the form of the cluster edge. The special emphasis is given to reveal the new properties with respect to the monolayer graphene quantum dots. The most interesting results are obtained for the triangular MQD with zig-zag edge at near-zero energies. The asymmetrically smeared multipeak feature is observed at Dirac point within the size-quantized energy gap region, where monolayer graphene flakes demonstrate the highly-degenerate zero-energy state. This feature, provided by the edge-localized electronic states results in the splash-wavelet behavior in diamagnetic orbital susceptibility as function of energy

    Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry

    Full text link
    [EN] The transport properties of copper chelates across an anion-exchange membrane were investigated by means of chronopotentiometry. Several solutions containing etidronic acid, copper sulfate and potassium chloride were evaluated. Tests were accomplished in a three-compartment reactor using a heterogeneous membrane containing quaternary ammonium functional groups. Results showed a strong relation between the amount of chelated anions and the limiting current density, the electrical resistance and the concentration polarization. An increase in the anionic equivalent charge of the solutions modified the three regions of the current-voltage curves. The acid medium was found to be less favorable because of the possibility of the formation of non-charged species in overlimiting regions. The presence of chloride anions increased the limiting current density, especially when the chloride concentration exceeded the etidronic acid concentration.Authors would like to thank the Institute for Technological Research (IPT), the Institute for Technological Research Foundation (FIPT), to the São Paulo Research Foundation (Fapesp - processes 2012/51871-9, 2014/21943-3 and 2014/13351-9) and the National Council for Scientific and Technological Development.Scarazzato, T.; Panossian, Z.; García Gabaldón, M.; Ortega Navarro, EM.; Tenório, J.; Pérez-Herranz, V.; Espinosa, D. (2017). Evaluation of the transport properties of copper ions through a heterogeneous ion-exchange membrane in etidronic acid solutions by chronopotentiometry. Journal of Membrane Science. 535:268-278. https://doi.org/10.1016/j.memsci.2017.04.048S26827853
    corecore