6,708 research outputs found

    An algorithm for computing the 2D structure of fast rotating stars

    Full text link
    Stars may be understood as self-gravitating masses of a compressible fluid whose radiative cooling is compensated by nuclear reactions or gravitational contraction. The understanding of their time evolution requires the use of detailed models that account for a complex microphysics including that of opacities, equation of state and nuclear reactions. The present stellar models are essentially one-dimensional, namely spherically symmetric. However, the interpretation of recent data like the surface abundances of elements or the distribution of internal rotation have reached the limits of validity of one-dimensional models because of their very simplified representation of large-scale fluid flows. In this article, we describe the ESTER code, which is the first code able to compute in a consistent way a two-dimensional model of a fast rotating star including its large-scale flows. Compared to classical 1D stellar evolution codes, many numerical innovations have been introduced to deal with this complex problem. First, the spectral discretization based on spherical harmonics and Chebyshev polynomials is used to represent the 2D axisymmetric fields. A nonlinear mapping maps the spheroidal star and allows a smooth spectral representation of the fields. The properties of Picard and Newton iterations for solving the nonlinear partial differential equations of the problem are discussed. It turns out that the Picard scheme is efficient on the computation of the simple polytropic stars, but Newton algorithm is unsurpassed when stellar models include complex microphysics. Finally, we discuss the numerical efficiency of our solver of Newton iterations. This linear solver combines the iterative Conjugate Gradient Squared algorithm together with an LU-factorization serving as a preconditionner of the Jacobian matrix.Comment: 40 pages, 12 figures, accepted in J. Comput. Physic

    Physical processes leading to surface inhomogeneities: the case of rotation

    Full text link
    In this lecture I discuss the bulk surface heterogeneity of rotating stars, namely gravity darkening. I especially detail the derivation of the omega-model of Espinosa Lara & Rieutord (2011), which gives the gravity darkening in early-type stars. I also discuss the problem of deriving gravity darkening in stars owning a convective envelope and in those that are members of a binary system.Comment: 23 pages, 11 figure, Lecture given to the school on the cartography of the Sun and the stars (May 2014 in Besan\c{c}on), to appear in LNP, Neiner and Rozelot edts V2: typos correcte

    Moving embedded lattice solitons

    Full text link
    It was recently proved that isolated unstable "embedded lattice solitons" (ELS) may exist in discrete systems. The discovery of these ELS gives rise to relevant questions such as the following: are there continuous families of ELS?, can ELS be stable?, is it possible for ELS to move along the lattice?, how do ELS interact?. The present work addresses these questions by showing that a novel differential-difference equation (a discrete version of a complex mKdV equation) has a two-parameter continuous family of exact ELS. The numerical tests reveal that these solitons are stable and robust enough to withstand collisions. The model may apply to the description of a Bose-Einstein condensate with dipole-dipole interactions between the atoms, trapped in a deep optical-lattice potential.Comment: 13 pages, 11 figure

    Pair distribution function and structure factor of spherical particles

    Full text link
    The availability of neutron spallation-source instruments that provide total scattering powder diffraction has led to an increased application of real-space structure analysis using the pair distribution function. Currently, the analytical treatment of finite size effects within pair distribution refinement procedures is limited. To that end, an envelope function is derived which transforms the pair distribution function of an infinite solid into that of a spherical particle with the same crystal structure. Distributions of particle sizes are then considered, and the associated envelope function is used to predict the particle size distribution of an experimental sample of gold nanoparticles from its pair distribution function alone. Finally, complementing the wealth of existing diffraction analysis, the peak broadening for the structure factor of spherical particles, expressed as a convolution derived from the envelope functions, is calculated exactly for all particle size distributions considered, and peak maxima, offsets, and asymmetries are discussed.Comment: 7 pages, 6 figure

    Condensation in an Economic Model with Brand Competition

    Full text link
    We present a linear agent based model on brand competition. Each agent belongs to one of the two brands and interacts with its nearest neighbors. In the process the agent can decide to change to the other brand if the move is beneficial. The numerical simulations show that the systems always condenses into a state when all agents belong to a single brand. We study the condensation times for different parameters of the model and the influence of different mechanisms to avoid condensation, like anti monopoly rules and brand fidelity.Comment: Accepted in: International Journal of Modern Physics

    Non-classical light state transfer in su(2)su(2) resonator networks

    Full text link
    We use a normal mode approach to show full and partial state transfer in a class of coupled resonator networks with underlying su(2)su(2) symmetry that includes the so-called JxJ_{x} photonic lattice. Our approach defines an auxiliary Hermitian coupling matrix describing the network that yields the normal modes of the system and its time evolution in terms of orthogonal polynomials. These results provide insight on the full quantum state reconstruction time in a general su(2)su(2) network of any size and the full quantum transfer time in the JxJ_{x} network of size 4n+14 n + 1 with n=1,2,3,
n=1,2,3,\ldots In the latter, our approach shows that the Fock state probability distribution of the initial state is conserved but the amplitudes suffer a phase shift proportional to π/2\pi/2 that results in partial quantum state transfer for any other network size.Comment: 13 pages, 1 figur

    Unique Identification of Lee-Wick Gauge Bosons at Linear Colliders

    Get PDF
    Grinstein, O'Connell and Wise have recently presented an extension of the Standard Model (SM), based on the ideas of Lee and Wick (LW), which demonstrates an interesting way to remove the quadratically divergent contributions to the Higgs mass induced by radiative corrections. This model predicts the existence of negative-norm copies of the usual SM fields at the TeV scale with ghost-like propagators and negative decay widths, but with otherwise SM-like couplings. In earlier work, it was demonstrated that the LW states in the gauge boson sector of these models, though easy to observe, cannot be uniquely identified as such at the LHC. In this paper, we address the issue of whether or not this problem can be resolved at an e+e−e^+e^- collider with a suitable center of mass energy range. We find that measurements of the cross section and the left-right polarization asymmetry associated with Bhabha scattering can lead to a unique identification of the neutral electroweak gauge bosons of the Lee-Wick type.Comment: 16 pages, 6 figures; discussion and references adde

    Remarks on the Upper Bounds on the Higgs Boson Mass from Triviality

    Full text link
    We study the effects of the one-loop matching conditions on Higgs boson and top quark masses on the triviality bounds on the Higgs boson mass using ÎČλ\beta_{\lambda} with corrected two-loop coefficients. We obtain quite higher results than previous ones and observe that the triviality bounds are not nearly influenced by varying top quark mass over the range measured at CDF and D0. The effects of typo errors in ÎČλ(2)\beta_{\lambda}^{(2)} and the one-loop matching condition on the top quark mass are negligible. We estimate the size of effects on the triviality bounds from the one-loop matching condition on the Higgs boson mass.Comment: 9 pages, tar'ed gzip'ed uuencoded files, LaTex, 5 PostScript figures. To appear in Physical Review

    Structure property relationships in halogenated aromatic amides and imides

    Get PDF
    The effect of halogens (X) and pyridine N atom substitution patterns on molecular structure and conformation is analyzed and discussed herein. Several series of 3 x 3 isomer grids (Scheme 1; Figs 1-3) of halo-N-(pyridyl)benzamides (Xxx) (C12H9N2OX, x = para-/meta-/ortho-) and their corresponding imides (Fig. 4) have been evaluated and correlated in terms of their structural relationships
    • 

    corecore