2,602 research outputs found
When is Concentration Beneficial?
This paper separates market power and efficiency effects of concentration in a sample of 255 U.S. manufacturing industries and computes welfare changes from rises in concentration. The empirical findings reveal that in nearly two-third of the cases, consumers lose as efficiency gains are generally pocketed by the industries. From an aggregate welfare standpoint, concentration is found to be beneficial in nearly 70% of the cases, mostly for low and moderate levels of concentration being particularly against the public interest in highly concentrated markets. Overall, the results support the existing U.S. Federal Trade Commission guidelines for approval of mergers.concentration, marked power, efficiency, manufacturing, Industrial Organization,
Performance of digital silicon photomultipliers for time of flight PET scanners
The performance of Digital Silicon Photomultipliers (dSiPM) coupled to a LYSO array containing 15×15 pixels with a size of 2×2×22 mm3 is evaluated to determinate their potential for whole body Time of Flight (TOF) PET scanners. The detector pixels are smaller in size than the light sensors and therefore light spreading is required to determine the crystal where interaction occurred. A light guide of 1 mm was used to spread the light and neighbor logic (NL) configuration were employed to ensure correct crystals identification. We studied the energy resolution and coincidence resolving time (CRT) for different trigger levels. The measured average energy resolution across detector was 14.5 %. Prior to measurements of time resolution skew time calibration of dSiPM was performed. The average CRT achieved using trigger level 1 option was 376 ps FWHM. Finally, we studied the amount of events that are disregarded due to dark count effects for different trigger levels and temperatures. Our studies show that a trade-off must be made between the detector’s CRT and sensitivity due to its vulnerability to dark counts. To employ dSiPM in TOF PET systems without 1:1 coupling effective cooling is necessary to limit dark count influence
Clinical consequences of relative biological effectiveness variations in proton radiotherapy of the prostate, brain and liver
Proton relative biological effectiveness (RBE) is known to depend on the (alpha/beta)(x) of irradiated tissues, with evidence of similar to 60% variation over (alpha/beta)(x) values from 1-10 Gy. The range of (alpha/beta)(x) values reported for prostate tumors (1.2-5.0 Gy), brain tumors (10-15 Gy) and liver tumors (13-17 Gy) imply that the proton RBE for these tissues could vary significantly compared to the commonly used generic value of 1.1. Our aim is to evaluate the impact of this uncertainty on the proton dose in Gy(RBE) absorbed in normal and tumor tissues. This evaluation was performed for standard and hypofractionated regimens. RBE-weighted total dose (RWTD) distributions for 15 patients (five prostate tumors, five brain tumors and five liver tumors) were calculated using an in-house developed RBE model as a function of dose, dose-averaged linear energy transfer (LETd) and (alpha/beta)(x). Variations of the dose-volume histograms (DVHs) for the gross tumor volume (GTV) and the organs at risk due to changes of (alpha/beta)(x) and fractionation regimen were calculated and the RWTD received by 10% and 90% of the organ volume reported. The goodness of the plan, bearing the uncertainties, was then evaluated compared to the delivered plan, which considers a constant RBE of 1.1. For standard fractionated regimens, the prostate tumors, liver tumors and all critical structures in the brain showed typically larger RBE values than 1.1. However, in hypofractionated regimens lower values of RBE than 1.1 were observed in most cases. Based on DVH analysis we found that the RBE variations were clinically significant in particular for the prostate GTV and the critical structures in the brain. Despite the uncertainties in the biological input parameters when estimating RBE values, the results show that the use of a variable RBE with dose, LETd and (alpha/beta)(x) could help to further optimize the target dose in proton treatment planning. Most importantly, this study shows that the consideration of RBE variations could influence the comparison of proton and photon treatments in clinical trials, in particular in the case of the prostate
Effects of dark counts on digital silicon photomultipliers performance
Digital Silicon Photomultipliers (dSiPM) are novel light detector that integrates single-photon avalanche photodiodes and CMOS logic into a single silicon chip and have been used for developing new, high performance detectors for Positron Emission Tomography (PET). As a solid-state devices they suffer from thermal excitation what leads to the appearance of noise events called dark counts. However, it is unclear what effect the dark counts have on the count rate performance of dSiPM. Therefore, it is necessary to investigate the event loss caused by these dark counts and to come up with optimal configuration of these devices. Here, the effects of dark counts on the performance of are evaluated. Due to the trigger architecture of dSiPM, dark counts cause start of acquisition sequence of the device. Processing of these dark counts leads to dead time of dSiPM what cause the loss of true gamma events. We studied how trigger level, validation level and validation length influence the loss of events due to dark counts. We found that validation time should be kept long (40 ns) to minimize the loss of events. Use of high trigger level and validation level also reduce the event loss caused by dark counts. However, with the high validation level, detection of events with low number of optical photons is reduced as it more difficult for these events to pass the validation threshold. The RTL refresh option was also tested to reduce the effect of dark counts. We found that this option resulted in the achieving maximum sensitivity, i.e. the highest fraction of correctly recorded true events, of dSiPM regardless of used validation and trigger levels. In cases when the scintillation light is spread over several dies, we found that the use of RTL refresh option combined with a low validation level in order to guarantee the individual validation of all required dies ensures higher sensitivity than the use of Neighbor Logic (NL). Finally we verified the dead time of dSiPM and found that is longer than specified and equal to 50 ns
Price and Cost Impacts of Concentration in Food Manufacturing Revisited
This study estimates the elasticities of wholesale food prices, cost efficiency, and market power with respect to industrial concentration in 35 food processing industries, modifying the model of Lopez, Azzam, and Lirón-España (2002). In contrast to the results of their earlier analysis, findings of this study indicate that further increases in concentration would result in significant processing cost savings (and Lerner index increases) in nearly all industries and that output prices would decline in nearly 50% of the industries, although significantly so in only 20% of them. As industrial concentration rises, price declines occur in industries with low levels of concentration while price increases occur in highly concentrated industries.cost efficiency, food prices, food processing, industrial concentration, market power, Marketing, Production Economics, Productivity Analysis,
Design of a realistic PET-CT-MRI phantom
The validation of the PET image quality of new PET-MRI systems should be done against the image quality of currently available PET-CT systems. This includes the validation of new attenuation correction methods. Such validation studies should preferentially be done using a phantom. There are currently no phantoms that have a realistic appearance on PET, CT and MRI. In this work we present the design and evaluation of such a phantom. The four most important tissue types for attenuation correction are air, lung, soft tissue and bone. An attenuation correction phantom should therefore contain these four tissue types. As it is difficult to mimic bone and lung on all three modalities using a synthetic material, we propose the use of biological material obtained from cadavers. For the lung section a lobe of a pig lung was used. It was excised and inflated using a ventilator. For the bone section the middle section of a bovine femur was used. Both parts were fixed inside a PMMA cylinder with radius 10 cm. The phantom was filled with 18F-FDG and two hot spheres and one cold sphere were added. First a PET scan was acquired on a PET-CT system. Subsequently, a transmission measurement and a CT acquisition were done on the same system. Afterwards, the phantom was moved to the MRI facility and a UTE-MRI was acquired. Average CT values and MRI R 2 values in bone and lung were calculated to evaluate the realistic appearance of the phantom on both modalities. The PET data was reconstructed with CT-based, transmission-based and MRI-based attenuation correction. The activity in the hot and cold spheres in the images reconstructed using transmission-based and MRI-based attenuation correction was compared to the reconstructed activity using CT-based attenuation correction. The average CT values in lung and bone were -630 HU and 1300 HU respectively. The average R 2 values were 0.7 ms -1 and 1.05 ms -1 respectively. These values are comparable to the values observed in clinical data sets. Transmission-based and MRI-based attenuation correction yielded an average difference with CT- based attenuation correction in the hot spots of -22 % and -8 %. In the cold spot the average differences were +3 % and -8 %. The construction of a PET-CT-MRI phantom was described. The phantom has a realistic appearance on all three modalities. It was used to evaluate two attenuation correction methods for PET-MRI scanners
Laser treatment of 13 benign oral vascular lesions by three different surgical techniques
Objectives: Benign Oral Vascular Lesions (BOVLs) are a group of vascular diseases characterized by congenital, inflammatory or neoplastic vascular dilations clinically evidenced as more or less wide masses of commonly dark bluish color. If traumatized BOVLs are characterized by a great risk of hemorrhage and their treatment usually requires great caution to prevent massive bleeding. In the last decades lasers have dramatically changed the way of treatment of BOVLs permitting the application of even peculiar techniques that gave interesting advantages in their management reducing hemorrhage risks. The aim of this study was to evaluate the capabilities and disadvantages of three laser assisted techniques in the management of BOVLs. Study design: In this study 13 BOVLs were treated by three different laser techniques: the traditional excisional biopsy (EB), and two less invasive techniques, the transmucosal thermocoagulation (TMT) and the intralesional photocoagulation (ILP). Two different laser devices were adopted in the study: a KTP laser (DEKA, Florence, Italy, 532nm) and a GaAlAs laser (Laser Innovation, Castelgandolfo, Italy, 808nm) selected since their great effectiveness on hemoglobin. Results: In each case, lasers permitted safe treatments of BOVLs without hemorrhages, both during the intervention and in the post-operative period. The minimally invasive techniques (TMT and ILP) permitted even the safe resolution of big lesions without tissue loss. Conclusions: Laser devices confirm to be the gold standard in BOVLs treatment, permitting even the introduction of minimal invasive surgery principles and reducing the risks of hemorrhage typical of these neoplasms. As usual in laser surgery, it is necessary a clear knowledge of the devices and of the laser-tissue interaction to optimize the results reducing risks and disadvantages
- …
