524 research outputs found

    Vented vectoring-nozzle for STOL and V/STOL aircraft

    Get PDF
    Vented vectoring-nozzle has superior thrust coefficient and is lighter in weight because it does not require completely enclosed elbow duct ordinarily used to deflect nozzle flow. Improved nozzle has primary nozzle and three-sided elbow deflector

    Thrust and mass flow characteristics of four 36 inch diameter tip turbine fan thrust vectoring systems in and out of ground effect

    Get PDF
    The calibration tests carried out on the propulsion system components of a 70 percent scale, powered model of a NASA 3-fan V/STOL aircraft configuration are described. The three X3/6B/T58 turbotip fan units used in the large scale powered model were tested on an isolated basis over a range of ground heights from H/D of 1.02 to infinity. A higher pressure ratio LF336/J85 fan unit was tested over a range of ground heights from 1.55 to infinity. The results of the test program demonstrated that: (1) the thrust and mass flow performance of the X376B/T58 nose lift unit is essentially constant for H/D variations down to 1.55; at H/D 1.02 back pressurization of the fan exit occurs and is accompanied by an increase in thrust of five percent; (2) a change in nose fan exit hub shape from flat plate to hemispherical produces no significant difference in louvered lift nozzle performance for height variations from H/D = 1.02 to infinity; (3) operation of the nose lift nozzle at the higher fan pressure ratio generated by the LF336/J85 fan system causes no significant change in ground proximity performance down to an H/D of 1.55, the lowest height tested with this unit; and (4) the performance of the left and right X376B/T58 lift/cruise units in the vertical lift mode remains unchanged, within plus or minus two percent for the range of ground heights from H/D = 1.02 to infinity

    Evolution of Ada technology in the flight dynamics area: Design phase analysis

    Get PDF
    The software engineering issues related to the use of the Ada programming language during the design phase of an Ada project are analyzed. Discussion shows how an evolving understanding of these issues is reflected in the design processes of three generations of Ada projects

    Effects of flow-path variations on internal reversing flow in a tailpipe offtake configuration for ASTOVL aircraft

    Get PDF
    A one-third-scale model of a generic tailpipe offtake system for an advanced short takeoff, vertical landing (ASTOVL) aircraft was tested at the NASA Lewis Research Center Powered Lift Facility. The basic model consisted of a tailpipe with a center body to form an annulus simulating turbine outflow with no swirl; twin offtake ducts with elbows at the ends to turn the flow to a downward direction; flow control nozzles at the ends of the elbows; and a blind flange at the end of the tailpipe to simulate a closed cruise nozzle. The offtake duct-to-tailpipe diameter ratio was 0.74. Modifications of a generic nature were then made to this basic configuration to measure the effects of flow-path changes on the flow and pressure-loss characteristics. The modifications included adding rounded entrances at the forward edges of the offtake openings, blocking the tailpipe just aft the openings instead of at the cruise nozzle, changing the location of the openings along the tailpipe, removing the center body, and varying the Mach number (flow rate) over a wide range in the tailpipe ahead of the openings by changing the size of the flow control nozzles. The tests were made with unheated air at tailpipe-to-ambient pressure ratios from 1.4 to 5. Results are presented and compared with performance graphs, total-pressure contour plots, paint streak flow visualization photographs, and a flow-angle probe traverse at the offtake entrance

    NASA Aeronautics Propulsion Overview

    Get PDF
    No abstract availabl

    Homelessness, Dehumanization, and the Role of Empathy

    Get PDF
    Dehumanization reflects a psychological process that denies individuals and groups the positive traits and attributes that make them human. Those experiencing homelessness are frequently dehumanized and perceived as social outcasts in American society. This study demonstrates the tendency of others to dehumanize individuals that are homeless and how increased empathy changes how this social outgroup is perceived. Results revealed that when exposed to information that humanizes a man experiencing homelessness, participants’ levels of empathy increased, and levels of disgust decreased. However, general attitudes and beliefs of homelessness were unchanged. The implications of increasing empathy levels for this social outgroup are discussed

    Experimental performance of three design factors for ventral nozzles for SSTOVL aircraft

    Get PDF
    An experimental study of three variations of a ventral nozzle system for supersonic short-takeoff and vertical-landing (SSTOVL) aircraft was performed at the NASA LeRC Powered Lift Facility. These test results include the effects of an annular duct flow into the ventral duct, a blocked tailpipe, and a short ventral duct length. An analytical study was also performed on the short ventral duct configuration using the PARC3D computational dynamics code. Data presented include pressure losses, thrust and flow performance, internal flow visualization, and pressure distributions at the exit plane of the ventral nozzle

    Experimental performance of a ventral nozzle with pitch and yaw vectoring capability for SSTOVL aircraft

    Get PDF
    Aircraft with supersonic, short takeoff, and vertical landing capability were proposed to replace some of the current high-performance aircraft. Several of these configurations use a ventral nozzle in the lower fuselage, aft of the center of gravity, for lift or pitch control. Internal vanes canted at 20 deg were added to a swivel-type ventral nozzle and tested at tailpipe-to-ambient pressure ratios up to 5.0 on the Powered Lift Facility at NASA LeRC. The addition of sets of four and seven vanes decreased the discharge coefficient by at least 6 percent and did not affect the thrust coefficient. Side force produced by the nozzle with vanes was 14 percent or more of the vertical force. In addition, this side force caused only a small loss in vertical force in comparison to the nozzle without vanes. The net thrust force was 8 deg from the vertical for four vanes and 10.5 deg for seven

    Experimental and analytical studies of flow through a ventral and axial exhaust nozzle system for STOVL aircraft

    Get PDF
    Flow through a combined ventral and axial exhaust nozzle system was studied experimentally and analytically. The work is part of an ongoing propulsion technology effort at NASA Lewis Research Center for short takeoff, vertical landing (STOVL) aircraft. The experimental investigation was done on the NASA Lewis Powered Lift Facility. The experiment consisted of performance testing over a range of tailpipe pressure ratios from 1 to 3.2 and flow visualization. The analytical investigation consisted of modeling the same configuration and solving for the flow using the PARC3D computational fluid dynamics program. The comparison of experimental and analytical results was very good. The ventral nozzle performance coefficients obtained from both the experimental and analytical studies agreed within 1.2 percent. The net horizontal thrust of the nozzle system contained a significant reverse thrust component created by the flow overturning in the ventral duct. This component resulted in a low net horizontal thrust coefficient. The experimental and analytical studies showed very good agreement in the internal flow patterns

    Performance characteristics of a one-third-scale, vectorable ventral nozzle for SSTOVL aircraft

    Get PDF
    Several proposed configurations for supersonic short takeoff, vertical landing aircraft will require one or more ventral nozzles for lift and pitch control. The swivel nozzle is one possible ventral nozzle configuration. A swivel nozzle (approximately one-third scale) was built and tested on a generic model tailpipe. This nozzle was capable of vectoring the flow up to + or - 23 deg from the vertical position. Steady-state performance data were obtained at pressure ratios to 4.5, and pitot-pressure surveys of the nozzle exit plane were made. Two configurations were tested: the swivel nozzle with a square contour of the leading edge of the ventral duct inlet, and the same nozzle with a round leading edge contour. The swivel nozzle showed good performance overall, and the round-leading edge configuration showed an improvement in performance over the square-leading edge configuration
    • …
    corecore