18 research outputs found

    The changing culture of silviculture

    Get PDF
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: reexamining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities

    The changing culture of silviculture

    Get PDF
    Changing climates are altering the structural and functional components of forest ecosystems at an unprecedented rate. Simultaneously, we are seeing a diversification of public expectations on the broader sustainable use of forest resources beyond timber production. As a result, the science and art of silviculture needs to adapt to these changing realities. In this piece, we argue that silviculturists are gradually shifting from the application of empirically derived silvicultural scenarios to new sets of approaches, methods and practices, a process that calls for broadening our conception of silviculture as a scientific discipline. We propose a holistic view of silviculture revolving around three key themes: observe, anticipate and adapt. In observe, we present how recent advances in remote sensing now enable silviculturists to observe forest structural, compositional and functional attributes in near-real-time, which in turn facilitates the deployment of efficient, targeted silvicultural measures in practice that are adapted to rapidly changing constraints. In anticipate, we highlight the importance of developing state-of-the-art models designed to take into account the effects of changing environmental conditions on forest growth and dynamics. In adapt, we discuss the need to provide spatially explicit guidance for the implementation of adaptive silvicultural actions that are efficient, cost-effective and socially acceptable. We conclude by presenting key steps towards the development of new tools and practical knowledge that will ensure meeting societal demands in rapidly changing environmental conditions. We classify these actions into three main categories: re-examining existing silvicultural trials to identify key stand attributes associated with the resistance and resilience of forests to multiple stressors, developing technological workflows and infrastructures to allow for continuous forest inventory updating frameworks, and implementing bold, innovative silvicultural trials in consultation with the relevant communities where a range of adaptive silvicultural strategies are tested. In this holistic perspective, silviculture can be defined as the science of observing forest condition and anticipating its development to apply tending and regeneration treatments adapted to a multiplicity of desired outcomes in rapidly changing realities

    Trade-offs across densities and mixture proportions in lodgepole pine-hybrid spruce plantations

    Get PDF
    Monocultures tend to yield higher total stand volumes and are simple to manage. Yet, mixed species stands may result in similar stand volumes while providing benefits such as mitigating damage from insects and disease. To understand the effects of stand density and species mixture and their interactions on stand yield, tree size and morphology, and damage in monocultures and mixtures, we analyzed a 25-year-old experiment in interior British Columbia, Canada. The lodgepole pine (Pl)-interior hybrid spruce (Sx) experiment included three densities?1000, 1500, and 2000 stems per hectare (SPH)?and five species mixtures?1:0, 3:1, 1:1, 1:3, and 0:1 Pl:Sx. Results 25 years after stand establishment showed that stand volume was significantly larger with an increasing proportion of Pl across all stand densities. Pl had 10% larger diameters in the 1000 SPH than in the 2000 SPH and when mixed with Sx (1:1). Pl had larger crowns in mixtures regardless of density. Mixture proportion did not affect gall rust incidence or stem form in Pl, but reduced attack in Sx by spruce weevil. Our findings suggest that mixing Pl-Sx and high planting density decrease weevil attacks in Sx, which reduce loss in timber quality. Yet, Pl quality may decrease when mixed with Sx, due to larger Pl crowns. These results may be used to improve the implementation of management strategies that decrease trade-offs between yields, desired market tree sizes, and timber loss from pest and pathogens, while making the stands more resilient to further climate change impact

    Tree Height Increment Models for National Forest Inventory Data in the Pacific Northwest, USA

    No full text
    The United States national inventory program measures a subset of tree heights in each plot in the Pacific Northwest. Unmeasured tree heights are predicted by adding the difference between modeled tree heights at two measurements to the height observed at the first measurement. This study compared different approaches for directly modeling 10-year height increment of red alder (RA) and ponderosa pine (PP) in Washington and Oregon using national inventory data from 2001–2015. In addition to the current approach, five models were implemented: nonlinear exponential, log-transformed linear, gamma, quasi-Poisson, and zero-inflated Poisson models using both tree-level (e.g., height, diameter at breast height, and compacted crown ratio) and plot-level (e.g., basal area, elevation, and slope) measurements as predictor variables. To account for negative height increment observations in the modeling process, a constant was added to shift all response values to greater than zero (log-transformed linear and gamma models), the negative increment was set to zero (quasi-Poisson and zero-inflated Poisson models), or a nonlinear model, which allows negative observations, was used. Random plot effects were included to account for the hierarchical data structure of the inventory data. Predictive model performance was examined through cross-validation. Among the implemented models, the gamma model performed best for both species, showing the smallest root mean square error (RSME) of 2.61 and 1.33 m for RA and PP, respectively (current method: RA—3.33 m, PP—1.40 m). Among the models that did not add the constant to the response, the quasi-Poisson model exhibited the smallest RMSE of 2.74 and 1.38 m for RA and PP, respectively. Our study showed that the prediction of tree height increment in Oregon and Washington can be improved by accounting for the negative and zero height increment values that are present in inventory data, and by including random plot effects in the models.Forestry, Faculty ofNon UBCForest Resources Management, Department ofReviewedFacult

    The roles of nearest neighbor methods in imputing missing data in forest inventory and monitoring databases

    Get PDF
    Almost universally, forest inventory and monitoring databases are incomplete, ranging from missing data for only a few records and a few variables, common for small land areas, to missing data for many observations and many variables, common for large land areas. For a wide variety of applications, nearest neighbor (NN) imputation methods have been developed to fill in observations of variables that are missing on some records (Y-variables), using related variables that are available for all records (X-variables). This review attempts to summarize the advantages and weaknesses of NN imputation methods and to give an overview of the NN approaches that have most commonly been used. It also discusses some of the challenges of NN imputation methods. The inclusion of NN imputation methods into standard software packages and the use of consistent notation may improve further development of NN imputation methods. Using X-variables from different data sources provides promising results, but raises the issue of spatial and temporal registration errors. Quantitative measures of the contribution of individual X-variables to the accuracy of imputing the Y-variables are needed. In addition, further research is warranted to verify statistical properties, modify methods to improve statistical properties, and provide variance estimators
    corecore