160 research outputs found

    Anisotropic Energy Distribution in Three-Dimensional Vibrofluidized Granular Systems

    Full text link
    We examine the energy distribution in a three-dimensional model granular system contained in an open cylinder under the influence of gravity. Energy is supplied to the system by a vibrating base. We introduce spatially resolved, partial particle-particle ``dissipations'' for directions parallel and perpendicular to the energy input, respectively. Energy balances show that the total (integrated) ``dissipation'' is less than zero in the parallel direction while greater than zero in the perpendicular directions. The energy supplied to the perpendicular directions is dissipated by particle-wall collisions. We further define a fractional energy transfer, which in the steady state represents the fraction of the power supplied by the vibrating base that is dissipated at the wall. We examine the dependence of the fractional energy transfer on the number of particles, the velocity of the vibrating base, the particle-particle restitution coefficient, and the particle-wall restitution coefficient. We also explore the influence of the system parameters on the spatially dependent partial dissipations.Comment: 10 pages, 10 figures, RevTeX forma

    Transient response of photoexcited electrons: negative and oscillating current

    Full text link
    Time-dependent current of the electrons excited in the conduction band after ultrafast interband photogeneration is studied theoretically. The transient photocurrent is calculated for the nonlinear regime of response to a stationary electric field. The response demonstrates transient absolute negative conductivity when the electrons are excited slightly below the optical phonon energy, while the periodic oscillations of the electric current appear after formation of the streaming distribution. The quenching of these peculiarities by the elastic scattering of electrons is also considered.Comment: 5 pages, 3 figure

    Strength distribution of repeatedly broken chains

    Full text link
    We determine the probability distribution of the breaking strength for chains of N links, which have been produced by repeatedly breaking a very long chain.Comment: 4 pages, 1 figur

    Velocity fluctuations in forced Burgers turbulence

    Full text link
    We propose a simple method to compute the velocity difference statistics in forced Burgers turbulence in any dimension. Within a reasonnable assumption concerning the nucleation and coalescence of shocks, we find in particular that the `left' tail of the distribution decays as an inverse square power, which is compatible with numerical data. Our results are compared to those of various recent approaches: instantons, operator product expansion, replicas.Comment: 10 pages latex, one postcript figur

    Close-packed floating clusters: granular hydrodynamics beyond the freezing point?

    Full text link
    Monodisperse granular flows often develop regions with hexagonal close packing of particles. We investigate this effect in a system of inelastic hard spheres driven from below by a "thermal" plate. Molecular dynamics simulations show, in a wide range of parameters, a close-packed cluster supported by a low-density region. Surprisingly, the steady-state density profile, including the close-packed cluster part, is well described by a variant of Navier-Stokes granular hydrodynamics (NSGH). We suggest a simple explanation for the success of NSGH beyond the freezing point.Comment: 4 pages, 5 figures. To appear in Phys. Rev. Let

    The secondary minimum in YY Her: Evidence for a tidally distorted giant

    Get PDF
    We present and analyze quiescent UBVRI light curves of the classical symbiotic binary YY Her. We show that the secondary minimum, which is clearly visible only in the quiescent VRI light curves, is due to ellipsoidal variability of the red giant component. Our simple light curve analysis, by fitting of the Fourier cosine series, resulted in a self-consistent phenomenological model of YY Her, in which the periodic changes can be described by a combination of the ellipsoidal changes and a sinusoidal changes of the nebular continuum and line emission.Comment: 5 pages, 2 figures, to appear in Astronomy & Astrophysic

    Nontrivial Velocity Distributions in Inelastic Gases

    Full text link
    We study freely evolving and forced inelastic gases using the Boltzmann equation. We consider uniform collision rates and obtain analytical results valid for arbitrary spatial dimension d and arbitrary dissipation coefficient epsilon. In the freely evolving case, we find that the velocity distribution decays algebraically, P(v,t) ~ v^{-sigma} for sufficiently large velocities. We derive the exponent sigma(d,epsilon), which exhibits nontrivial dependence on both d and epsilon, exactly. In the forced case, the velocity distribution approaches a steady-state with a Gaussian large velocity tail.Comment: 4 pages, 1 figur

    Dynamics of Freely Cooling Granular Gases

    Full text link
    We study dynamics of freely cooling granular gases in two-dimensions using large-scale molecular dynamics simulations. We find that for dilute systems the typical kinetic energy decays algebraically with time, E(t) ~ t^{-1}, in the long time limit. Asymptotically, velocity statistics are characterized by a universal Gaussian distribution, in contrast with the exponential high-energy tails characterizing the early homogeneous regime. We show that in the late clustering regime particles move coherently as typical local velocity fluctuations, Delta v, are small compared with the typical velocity, Delta v/v ~ t^{-1/4}. Furthermore, locally averaged shear modes dominate over acoustic modes. The small thermal velocity fluctuations suggest that the system can be heuristically described by Burgers-like equations.Comment: 4 pages, 5 figure

    Dynamics of inelastically colliding rough spheres: Relaxation of translational and rotational energy

    Full text link
    We study the exchange of kinetic energy between translational and rotational degrees of freedom for inelastic collisions of rough spheres. Even if equipartition holds in the initial state it is immediately destroyed by collisions. The simplest generalisation of the homogeneous cooling state allows for two temperatures, characterizing translational and rotational degrees of freedom separately. For times larger than a crossover frequency, which is determined by the Enskog frequency and the initial temperature, both energies decay algebraically like t−2t^{-2} with a fixed ratio of amplitudes, different from one.Comment: 5 pages, RevTeX, 2 eps figures, slightly expanded discussion, new figures with dimensionless units, added references, accepted for publication in PRE as a Rapid Com
    • …
    corecore