19 research outputs found

    Performance of the G4 Xpert(R) MTB/RIF assay for the detection of Mycobacterium tuberculosis and rifampin resistance: a retrospective case-control study of analytical and clinical samples from high- and low-tuberculosis prevalence settings

    Get PDF
    BACKGROUND: The Xpert(R) MTB/RIF (Xpert) assay is a rapid PCR-based assay for the detection of Mycobacterium tuberculosis complex DNA (MTBc) and mutations associated with rifampin resistance (RIF). An updated version introduced in 2011, the G4 Xpert, included modifications to probe B and updated analytic software. METHODS: An analytical study was performed to assess Xpert detection of mutations associated with rifampin resistance in rifampin-susceptible and -resistant isolates. A clinical study was performed in which specimens from US and non-US persons suspected of tuberculosis (TB) were tested to determine Xpert performance characteristics. All specimens underwent smear microscopy, mycobacterial culture, conventional drug-susceptibility testing and Xpert testing; DNA from isolates with discordant rifampin resistance results was sequenced. RESULTS: Among 191 laboratory-prepared isolates in the analytical study, Xpert sensitivity for detection of rifampin resistance associated mutations was 97.7% and specificity was 90.8%, which increased to 99.0% after DNA sequencing analysis of the discordant samples. Of the 1,096 subjects in the four clinical studies, 49% were from the US. Overall, Xpert detected MTBc in 439 of 468 culture-positive specimens for a sensitivity of 93.8% (95% confidence interval [CI]: 91.2%-95.7%) and did not detect MTBc in 620 of 628 culture-negative specimens for a specificity of 98.7% (95% CI: 97.5%-99.4%). Sensitivity was 99.7% among smear-positive cases, and 76.1% among smear-negative cases. Non-determinate MTBc detection and false-positive RIF resistance results were low (1.2 and 0.9%, respectively). CONCLUSIONS: The updated Xpert assay retained the high sensitivity and specificity of the previous assay versions and demonstrated low rates of non-determinate and RIF resistance false positive results

    Outbreak of Mycobacterium chelonae Infection Associated with Tattoo Ink

    Get PDF
    Background In January 2012, on the basis of an initial report from a dermatologist, we began to investigate an outbreak of tattoo-associated Mycobacterium chelonae skin and softtissue infections in Rochester, New York. The main goals were to identify the extent, cause, and form of transmission of the outbreak and to prevent further cases of infection. Methods We analyzed data from structured interviews with the patients, histopathological testing of skin-biopsy specimens, acid-fast bacilli smears, and microbial cultures and antimicrobial susceptibility testing. We also performed DNA sequencing, pulsed-field gel electrophoresis (PFGE), cultures of the ink and ingredients used in the preparation and packaging of the ink, assessment of source water and faucets at tattoo parlors, and investigation of the ink manufacturer. Results Between October and December 2011, a persistent, raised, erythematous rash in the tattoo area developed in 19 persons (13 men and 6 women) within 3 weeks after they received a tattoo from a single artist who used premixed gray ink; the highest occurrence of tattooing and rash onset was in November (accounting for 15 and 12 patients, respectively). The average age of the patients was 35 years (range, 18 to 48). Skin-biopsy specimens, obtained from 17 patients, showed abnormalities in all 17, with M. chelonae isolated from 14 and confirmed by means of DNA sequencing. PFGE analysis showed indistinguishable patterns in 11 clinical isolates and one of three unopened bottles of premixed ink. Eighteen of the 19 patients were treated with appropriate antibiotics, and their condition improved. Conclusions The premixed ink was the common source of infection in this outbreak. These findings led to a recall by the manufacturer

    The 2021 WHO catalogue of Mycobacterium tuberculosis complex mutations associated with drug resistance: a genotypic analysis.

    Get PDF
    Background: Molecular diagnostics are considered the most promising route to achievement of rapid, universal drug susceptibility testing for Mycobacterium tuberculosis complex (MTBC). We aimed to generate a WHO-endorsed catalogue of mutations to serve as a global standard for interpreting molecular information for drug resistance prediction. Methods: In this systematic analysis, we used a candidate gene approach to identify mutations associated with resistance or consistent with susceptibility for 13 WHO-endorsed antituberculosis drugs. We collected existing worldwide MTBC whole-genome sequencing data and phenotypic data from academic groups and consortia, reference laboratories, public health organisations, and published literature. We categorised phenotypes as follows: methods and critical concentrations currently endorsed by WHO (category 1); critical concentrations previously endorsed by WHO for those methods (category 2); methods or critical concentrations not currently endorsed by WHO (category 3). For each mutation, we used a contingency table of binary phenotypes and presence or absence of the mutation to compute positive predictive value, and we used Fisher's exact tests to generate odds ratios and Benjamini-Hochberg corrected p values. Mutations were graded as associated with resistance if present in at least five isolates, if the odds ratio was more than 1 with a statistically significant corrected p value, and if the lower bound of the 95% CI on the positive predictive value for phenotypic resistance was greater than 25%. A series of expert rules were applied for final confidence grading of each mutation. Findings: We analysed 41 137 MTBC isolates with phenotypic and whole-genome sequencing data from 45 countries. 38 215 MTBC isolates passed quality control steps and were included in the final analysis. 15 667 associations were computed for 13 211 unique mutations linked to one or more drugs. 1149 (7·3%) of 15 667 mutations were classified as associated with phenotypic resistance and 107 (0·7%) were deemed consistent with susceptibility. For rifampicin, isoniazid, ethambutol, fluoroquinolones, and streptomycin, the mutations' pooled sensitivity was more than 80%. Specificity was over 95% for all drugs except ethionamide (91·4%), moxifloxacin (91·6%) and ethambutol (93·3%). Only two resistance mutations were identified for bedaquiline, delamanid, clofazimine, and linezolid as prevalence of phenotypic resistance was low for these drugs. Interpretation: We present the first WHO-endorsed catalogue of molecular targets for MTBC drug susceptibility testing, which is intended to provide a global standard for resistance interpretation. The existence of this catalogue should encourage the implementation of molecular diagnostics by national tuberculosis programmes. Funding: Unitaid, Wellcome Trust, UK Medical Research Council, and Bill and Melinda Gates Foundation

    Mycobacterium orygis Lymphadenitis in New York, USA

    No full text
    We report a case of lymphadenitis caused by Mycobacterium orygis in an immunocompetent person in Stony Brook, New York, USA. Initial real-time PCR assay failed to provide a final subspecies identification within the M. tuberculosis complex, but whole-genome sequencing characterized the isolate as M. orygis

    Multidrug-resistant tuberculosis in Port-au-Prince, Haiti Tuberculosis multirresistente en Puerto Príncipe, Haití

    No full text
    OBJECTIVE: To determine the prevalence of multidrug-resistant tuberculosis (MDR-TB) among patients with new smear-positive pulmonary TB in Port-au-Prince, Haiti. METHODS: Sputum samples were cultured from 1 006 patients newly diagnosed with TB in 2008. The core region of the rpoB gene that is associated with resistance to rifampin was sequenced. All isolates with rpoB mutations were sent to the New York State reference laboratory for conventional drug susceptibility testing (DST). All isolates were also tested with the GenoType MTBDRplus line-probe assay. RESULTS: Mycobacterium tuberculosis was isolated from 906 patients. Twenty-six (2.9%) of the isolates had missense mutations or deletions in rpoB and were resistant to rifampin by DST. All 26 were also resistant to isoniazid and classified as MDR-TB. Forty-six control isolates without rpoB mutations were found to be rifampin sensitive by DST. The GenoType MTBDRplus line-probe assay correctly identified 26 MDR-TB strains. It misclassified one pansusceptible isolate as rifampin resistant. CONCLUSIONS: This study shows an MDR-TB prevalence of 2.9% in newly diagnosed TB patients in Haiti and suggests that rpoB sequencing and hybridization assays are good screening tools for early detection of MDR-TB.OBJETIVO: Determinar la prevalencia de tuberculosis (TB) multirresistente en pacientes con TB pulmonar nueva con baciloscopia positiva en Puerto Príncipe, Haití. MÉTODOS: Se cultivaron muestras de esputo de 1 006 pacientes con diagnóstico reciente de tuberculosis efectuado durante el 2008. Se secuenció la región nuclear del gen rpoB, que se asocia con la resistencia a la rifampicina. Todos los aislados con mutaciones de rpoB se enviaron al laboratorio de referencia del estado de Nueva York para llevar a cabo un antibiograma convencional. Todos los aislados se estudiaron también con el ensayo de sonda lineal GenoType MTBDRplus. RESULTADOS: Se aisló Mycobacterium tuberculosis de 906 pacientes. Veintiséis (2,9%) de los aislados presentaban mutaciones de sentido erróneo o deleciones en rpoB y fueron resistentes a la rifampicina en el antibiograma. Los 26 aislados fueron resistentes también a la isoniacida y se clasificaron como TB multirresistente. Cuarenta y seis aislados de control sin mutaciones de rpoB resultaron sensibles a la rifampicina en el antibiograma. El ensayo de sonda lineal GenoType MTBDRplus identificó correctamente a las 26 cepas de TB multirresistente y clasificó de manera errónea un aislado sensible a múltiples fármacos como resistente a la rifampicina. CONCLUSIONES: Este estudio revela una prevalencia de TB multirresistente de 2,9% en los pacientes con TB recién diagnosticada en Haití e indica que los ensayos de secuenciación e hibridación de rpoB son estudios de detección sistemática adecuados para la detección temprana de la TB multirresistente

    Using Reduced Inoculum Densities of Mycobacterium tuberculosis in MGIT Pyrazinamide Susceptibility Testing to Prevent False-Resistant Results and Improve Accuracy: A Multicenter Evaluation

    No full text
    The primary platform used for pyrazinamide (PZA) susceptibility testing of Mycobacterium tuberculosis is the MGIT culture system (Becton Dickinson). Since false-resistant results have been associated with the use of this system, we conducted a multicenter evaluation to determine the effect of using a reduced cell density inoculum on the rate of false resistance. Two reduced inoculum densities were compared with that prescribed by the manufacturer (designated as “BD” method). The reduced inoculum methods (designated as “A” and “C”) were identical to the manufacturer’s protocol in all aspects with the exception of the cell density of the inoculum. Twenty genetically and phenotypically characterized M. tuberculosis isolates were tested in duplicate by ten independent laboratories using the three inoculum methods. False-resistant results declined from 21.1% using the standard “BD” method to 5.7% using the intermediate (“A”) inoculum and further declined to 2.8% using the most dilute (“C”) inoculum method. The percentages of the resistant results that were false-resistant declined from 55.2% for the “BD” test to 28.8% and 16.0% for the “A” and “C” tests, respectively. These results represent compelling evidence that the occurrence of false-resistant MGIT PZA susceptibility test results can be mitigated through the use of reduced inoculum densities

    Whole Genome Sequencing Investigation of a Tuberculosis Outbreak in Port-au-Prince, Haiti Caused by a Strain with a “Low-Level” <i>rpoB</i> Mutation L511P – Insights into a Mechanism of Resistance Escalation

    No full text
    <div><p>The World Health Organization recommends diagnosing Multidrug-Resistant Tuberculosis (MDR-TB) in high burden countries by detection of mutations in Rifampin (RIF) Resistance Determining Region of <i>Mycobacterium tuberculosis rpoB</i> gene with rapid molecular tests GeneXpert MTB/RIF and Hain MTBDR<i>plus</i>. Such mutations are found in >95% of <i>Mycobacterium tuberculosis</i> strains resistant to RIF by conventional culture-based drug susceptibility testing (DST). However routine diagnostic screening with molecular tests uncovered specific “low level” <i>rpoB</i> mutations conferring resistance to RIF below the critical concentration of 1 μg/ml in some phenotypically susceptible strains. Cases with discrepant phenotypic (susceptible) and genotypic (resistant) results for resistance to RIF account for at least 10% of resistant diagnoses by molecular tests and urgently require new guidelines to inform therapeutic decision making. Eight strains with a “low level” <i>rpoB</i> mutation L511P were isolated by GHESKIO laboratory between 2008 and 2012 from 6 HIV-negative and 2 HIV-positive patients during routine molecular testing. Five isolates with a single L511P mutation and two isolates with double mutation L511P&M515T had MICs for RIF between 0.125 and 0.5 μg/ml and tested susceptible in culture-based DST. The eighth isolate carried a double mutation L511P&D516C and was phenotypically resistant to RIF. All eight strains shared the same spoligotype SIT 53 commonly found in Haiti but classic epidemiological investigation failed to uncover direct contacts between the patients. Whole Genome Sequencing (WGS) revealed that L511P cluster isolates resulted from a clonal expansion of an ancestral strain resistant to Isoniazid and to a very low level of RIF. Under the selective pressure of RIF-based therapy the strain acquired mutation in the M306 codon of <i>embB</i> followed by secondary mutations in <i>rpoB</i> and escalation of resistance level. This scenario highlights the importance of subcritical resistance to RIF for both clinical management of patients and public health and provides support for introducing <i>rpoB</i> mutations as proxy for MICs into laboratory diagnosis of RIF resistance. This study illustrates that WGS is a promising multi-purpose genotyping tool for high-burden settings as it provides both “gold standard” sequencing results for prediction of drug susceptibility and a high-resolution data for epidemiological investigation in a single assay.</p></div
    corecore