15,758 research outputs found

    Applications and identification of surface correlations

    Get PDF
    We compare theoretical, experimental, and computational approaches to random rough surfaces. The aim is to produce rough surfaces with desirable correlations and to analyze the correlation functions extracted from the surface profiles. Physical applications include ultracold neutrons in a rough waveguide, lateral electronic transport, and scattering of longwave particles and waves. Results provide guidance on how to deal with experimental and computational data on rough surfaces. A supplemental goal is to optimize the neutron waveguide for GRANIT experiments. The measured correlators are identified by fitting functions or by direct spectral analysis. The results are used to compare the calculated observables with theoretical values. Because of fluctuations, the fitting procedures lead to inaccurate physical results even if the quality of the fit is very good unless one guesses the right shape of the fitting function. Reliable extraction of the correlation function from the measured surface profile seems virtually impossible without independent information on the structure of the correlation function. Direct spectral analysis of raw data rarely works better than the use of a "wrong" fitting function. Analysis of surfaces with a large correlation radius is hindered by the presence of domains and interdomain correlations

    Testing lorentz and CPT invariance with ultracold neutrons

    Get PDF
    In this paper we investigate, within the standard model extension framework, the influence of Lorentz- and CPT-violating terms on gravitational quantum states of ultracold neutrons. Using a semiclassical wave packet, we derive the effective nonrelativistic Hamiltonian which describes the neutrons vertical motion by averaging the contributions from the perpendicular coordinates to the free falling axis. We compute the physical implications of the Lorentz- and CPT-violating terms on the spectra. The comparison of our results with those obtained in the GRANIT experiment leads to an upper bound for the symmetries-violation c(mu nu)(n) coefficients. We find that ultracold neutrons are sensitive to the a(i)(n) and e(i)(n) coefficients, which thus far are unbounded by experiments in the neutron sector. We propose two additional problems involving ultracold neutrons which could be relevant for improving our current bounds; namely, gravity-resonance spectroscopy and neutron whispering gallery wave.CONACyT [234745, 234774
    • …
    corecore