80 research outputs found

    Classification of specimen density in Laser Powder Bed Fusion (L-PBF) using in-process structure-borne acoustic process emissions

    Get PDF
    Currently, the laser powder bed fusion (L-PBF) process cannot offer a reproducible and predefined quality of the processed parts. Recent research on process monitoring focuses strongly on integrated optical measurement technology. Besides optical sensors, acoustic sensors also seem promising. Previous studies have shown the potential of analyzing structure-borne and air-borne acoustic emissions in laser welding. Only a few works evaluate the potential that lies in the usage during the L-PBF process. This work shows how the approach to structure-borne acoustic process monitoring can be elaborated by correlating acoustic signals to statistical values indicating part quality. Density measurements according to Archimedes’ principle are used to label the layer-based acoustic data and to measure the quality. The data set is then treated as a classification problem while investigating the applicability of existing artificial neural network algorithms to match acoustic data with density measurements. Furthermore, this work investigates the transferability of the approach to more complex specimens

    Shot-noise limited monitoring and phase locking of the motion of a single trapped ion

    Full text link
    We perform high-resolution real-time read-out of the motion of a single trapped and laser-cooled Ba ion. By using an interferometric setup we demonstrate shot-noise limited measurement of thermal oscillations with resolution of 4 times the standard quantum limit. We apply the real-time monitoring for phase control of the ion motion through a feedback loop, suppressing the photon recoil-induced phase diffusion. Due to the spectral narrowing in phase-locked mode, the coherent ion oscillation is measured with resolution of about 0.3 times the standard quantum limit

    Single spontaneous photon as a coherent beamsplitter for an atomic matterwave

    Full text link
    In spontaneous emission an atom in an excited state undergoes a transition to the ground state and emits a single photon. Associated with the emission is a change of the atomic momentum due to photon recoil. Photon emission can be modified close to surfaces and in cavities. For an ion, localized in front of a mirror, coherence of the emitted resonance fluorescence has been reported. In free space experiments demonstrated that spontaneous emission destroys motional coherence. Here we report on motional coherence created by a single spontaneous emission event close to a mirror surface. The coherence in the free atomic motion is verified by atom interferometry. The photon can be regarded as a beamsplitter for an atomic matterwave and consequently our experiment extends the original recoiling slit Gedanken experiment by Einstein to the case where the slit is in a robust coherent superposition of the two recoils associated with the two paths of the quanta.Comment: main text: 5 pages, 4 figure; supplementary information: 8 pages, 1 figur

    Precision measurement and compensation of optical Stark shifts for an ion-trap quantum processor

    Get PDF
    Using optical Ramsey interferometry, we precisely measure the laser-induced AC-stark shift on the S1/2S_{1/2} -- D5/2D_{5/2} "quantum bit" transition near 729 nm in a single trapped 40^{40}Ca+^+ ion. We cancel this shift using an additional laser field. This technique is of particular importance for the implementation of quantum information processing with cold trapped ions. As a simple application we measure the atomic phase evolution during a n×2πn \times 2\pi rotation of the quantum bit.Comment: 4 pages, 4 figure

    Polarization-correlated photon pairs from a single ion

    Full text link
    In the fluorescence light of a single atom, the probability for emission of a photon with certain polarization depends on the polarization of the photon emitted immediately before it. Here correlations of such kind are investigated with a single trapped calcium ion by means of second order correlation functions. A theoretical model is developed and fitted to the experimental data, which show 91% probability for the emission of polarization-correlated photon pairs within 24 ns.Comment: 8 pages, 9 figure

    Quantum jumps induced by the center-of-mass motion of a trapped atom

    Full text link
    We theoretically study the occurrence of quantum jumps in the resonance fluorescence of a trapped atom. Here, the atom is laser cooled in a configuration of level such that the occurrence of a quantum jump is associated to a change of the vibrational center-of-mass motion by one phonon. The statistics of the occurrence of the dark fluorescence period is studied as a function of the physical parameters and the corresponding features in the spectrum of resonance fluorescence are identified. We discuss the information which can be extracted on the atomic motion from the observation of a quantum jump in the considered setup

    Deterministic single-photon source from a single ion

    Full text link
    We realize a deterministic single-photon source from one and the same calcium ion interacting with a high-finesse optical cavity. Photons are created in the cavity with efficiency (88 +- 17)%, a tenfold improvement over previous cavity-ion sources. Results of the second-order correlation function are presented, demonstrating a high suppression of two-photon events limited only by background counts. The cavity photon pulse shape is obtained, with good agreement between experiment and simulation. Moreover, theoretical analysis of the temporal evolution of the atomic populations provides relevant information about the dynamics of the process and opens the way to future investigations of a coherent atom-photon interface

    Forces between a single atom and its distant mirror image

    Full text link
    An excited-state atom whose emitted light is back-reflected by a distant mirror can experience trapping forces, because the presence of the mirror modifies both the electromagnetic vacuum field and the atom's own radiation reaction field. We demonstrate this mechanical action using a single trapped barium ion. We observe the trapping conditions to be notably altered when the distant mirror is shifted by an optical wavelength. The well-localised barium ion enables the spatial dependence of the forces to be measured explicitly. The experiment has implications for quantum information processing and may be regarded as the most elementary optical tweezers.Comment: 4 pages, 5 figures, published versio

    Resonant interaction of a single atom with single photons from a down-conversion source

    Full text link
    We observe the interaction of a single trapped calcium ion with single photons produced by a narrow-band, resonant down-conversion source [A. Haase et al., Opt. Lett. 34, 55 (2009)], employing a quantum jump scheme. Using the temperature dependence of the down-conversion spectrum and the tunability of the narrow source, absorption of the down-conversion photons is quantitatively characterized.Comment: 4 pages, 3 figure
    corecore