2 research outputs found

    Experimental and analytical study of concrete structures reinforced with GFRP bars

    Get PDF
    The rational use of natural, economic and social resources in order to ensure the sustainability and a long-term balance has become one of the largest global concerns. In the civil engineering field, the limited durability of steel reinforced concrete structures, especially in aggressive environments, and the high costs of the repair and maintenance operations have motivated the search for alternative materials and solutions to steel. One of these alternative reinforcements is the glass fibre reinforced polymer (GFRP) bars due to their immunity to corrosion, which is an important advantage when comparing to steel. However, several factors such as the novelty in the market, the high fabrication costs, the different design philosophies and the uncertainties of its behaviour with the concrete have been delaying the use of the GFRP bars in a larger scale. This thesis aims to contribute to the scientific knowledge of the GFRP reinforced concrete, as it studies its behaviour and design. The research work is mainly experimental and is based on a campaign with 24 full-scale reinforced concrete (RC) beams 4.30 m long and rectangular crosssection of 0.25 x 0.40 m2, divided into two groups with different purposes: - 18 beams to study the performance of different GFRP bar layouts as shear reinforcement; - 6 beams to assess the behaviour of a rehabilitation solution with GFRP bars to replace the deteriorated flexural steel reinforcement. The specimens of the first group were designed to fail due to shear with four different GFRP shear reinforcement solutions: 1) closed hoop GFRP stirrups, 2) two C shaped GFRP bars forming a stirrup, 3) two double headed GFRP bars and 4) two simple straight GFRP bars. Two shear reinforcement ratios with different spacing were also tested with the closed hoop GFRP stirrups. For each GFRP shear reinforcement layout, three different longitudinal stiffnesses were considered using steel and GFRP bars with different ratios. The beam specimens were tested until failure under a four point loading set-up and both the serviceability and the ultimate performance were analysed. The results were reported in terms of deflections, crack pattern, crack width, strains in the longitudinal and shear reinforcements, ultimate load capacity and failure modes. The different shear layouts were compared regarding their load carrying performance and their field implementation easiness. The design of the beams and their result predictions were made according to the existing guidelines and codes. It was concluded that the closed hoop stirrups and the C-stirrups were the most efficient and that the beams load capacity was highly underestimated by the GFRP codes. To improve the design formulas of these codes, different values for the limit strains and for the strut angle were proposed. The double headed bars as shear reinforcement were also efficient in the cases with higher longitudinal stiffness because it contributed to keep the integrity of the beam by exhibiting low deflections and crack widths. It was observed that a wide crack at the end of these bars highly compromises the anchorage function of the head. The solution of the simple straight bars was not effective because of the lack of anchorage length. The idea for the second group of beams was inspired on the RC structures with deteriorated bottom concrete due to the corrosion of the longitudinal steel reinforcement. Actually, no steel corrosion was considered in these specimens, but they were concreted in two phases to simulate the replacement of the deteriorated concrete, starting at the stage after its complete removal. The rehabilitation procedure consisted on the insertion of the longitudinal GFRP bars and the concreting of a new bottom layer in the beam. Two solutions with different GFRP longitudinal cross-section areas were designed according to the existing guidelines, one to restore the ultimate load capacity of the original beam, and the other to maintain the deflection of the original beam. The ends of the GFRP bars were conic heads to compensate their lower anchorage length. The rehabilitated beam specimens were subjected to 3 point bending tests until failure, and their service and ultimate behaviour were analysed. Results are presented in terms of deflection, crack pattern, mid-span crack width, reinforcement strains, ultimate flexural capacity and failure modes. It was concluded that this technique was effective for both the serviceability and ultimate limit states of the rehabilitated beam, as it was able to restore the deflection and the load capacity of the original beam, and that the existing GFRP design documents can be used. Although this was mainly an experimental research work, a simple but reliable two-dimensional finite element (FE) model was defined using ATENA software to simulate the tests, which helped to better understand some issues regarding the specimens behaviour and enabled to extrapolate some results of non-tested possibilities. The linear and nonlinear behaviour of all materials was adequately modelled by appropriate constitutive laws. Furthermore, numerical results were compared with the experimental results. Results show that, in general there was a good agreement between the overall modelling results and the experimental ones. The constructed models were able to predict the experimental behaviour in terms of ultimate capacity and load-deflection curves. Regarding the first group of beams, two additional stirrups spacing were modelled in order to clarify its influence in the shear capacity. It was simulated different longitudinal reinforcement ratios to assess its influence in the shear capacity. As a final remark, the results of the present work show that the use of GFRP bars is viable in RC structures, which contributes to more durable structures in long-term. This material can be used as longitudinal and shear reinforcement of new structures and as a rehabilitation solution to replace the corroded steel in deteriorated structures

    Estudo do comportamento de passagens superiores de peões com tabuleiro misto aço-betão

    Get PDF
    Como resposta às exigências do mundo actual, a projecção e construção de estruturas sofreram grandes alterações, assistindo-se à construção de estruturas cada vez mais esbeltas, integradas no ambiente circundante, transparentes, ousadas. Consequentemente a sua concepção constituí um desafio que é suportado por avanços na arte da engenharia, novos materiais e pela sensibilidade dos projectistas. Neste sentido as passagens superiores de peões não constituem excepção. São construídas desde os tempos remotos porém, hoje, querem-se mais ousadas, esbeltas, transparentes, integradas no ambiente circundante, económicas e eficientes, como forma de responder às exigências do mundo actual. Inicialmente forma de vencer obstáculos naturais, são hoje em dia, um meio para vencer a forte obstáculos inerentes as modificações da rede viária e à forte ocupação do espaço, fruto da crescente urbanização. Estas estruturas têm carregamentos baixos, o que possibilita a construção de vãos longos com esbeltas secções transversais, tornando-se estruturas muito flexíveis, com reduzida massa e rigidez, de que resultam frequências próprias de vibração baixas conduzindo a uma maior sensibilidade às vibrações. Com a construção das novas Vias Rápidas na ilha da Madeira, houve a necessidade de repor acessos pedonais por meio destas pontes. Apesar de existirem várias destas pontes, são essencialmente de dois tipos: de tabuleiro em treliça espacial mista ou tabuleiro do tipo “bi-viga” mista. Assim, no âmbito de um estágio na empresa Estradas da Madeira (RAMEDM, S.A.), procurou-se estudar uma ponte de cada um dos tipos mencionados, com intuito de compreender a acção pedonal, as suas características e formas de simular verificando a eficiência de ambos os modelos, os níveis de conforto que oferecem, e a segurança face aos valores limites apresentados nalguns regulamentos. Construíram-se modelos computacionais usando o programa SAP2000, nos quais se simulou quatro movimentos característicos da acção pedonal (andamento normal, andamento acelerado, jogging e corrida), através das respectivas funções de carga. Por já se encontrar construído, o tabuleiro em treliça mista foi ensaiado, de forma a validar o modelo computacional. Verificou-se que as frequências obtidas no modelo são próximas das reais. Verificou-se que ambos os modelos, apresentam um bom comportamento no que concerne às vibrações na direcção transversal, já que têm frequências de vibração suficientemente afastadas da gama excitável pela acção humana. Quanto às vibrações na direcção vertical, uma vez que ambos os tabuleiros têm frequências fundamentais coincidentes com as frequências de alguns dos movimentos simulados, verificaram-se acelerações acentuadas. O estudo destas estruturas mostrou em traços genéricos, que além das vantagens construtivas, ambos os modelos apresentam bom comportamento à acção pedonal.As an answer to today’s world demands, the projection and construction of structures has suffered great changes, so that we have been watching the build of structures increasingly slim, integrated in the surrounding environment, transparent and bold. Thus their conception constitutes a challenge that is supported by advances in the art of engineering and new materials. In this regard pedestrian bridges are no exception. Built since ancient times to overcome natural obstacles, today they have to be bolder, slender, and transparent, integrated into the surrounding environment, economic and efficient, as a way to respond to the societies requirements. They are a way to overcome obstacles inherent to the strong development of road net and the heavy use of space as the result of the growing urbanization. Their low level of loading allows the construction of long spans with slender cross-sections, reduced mass and stiffness, leading to low vibration frequencies and greater sensitivity to vibrations. With the construction of news expressways in Madeira, it was necessary to restore some pedestrian access through these bridges. Although there are several of these bridges, they have essentially two deck configurations: composite space truss and composite “two-beam”. In the context of a traineeship in the company Estradas da Madeira (RAMEDM, S.A.), it was looked to study a bridge of each of the mentioned types, to understand the pedestrian action, their characteristics and ways of verifying the efficiency of both models , the comfort levels they offer and the security face to the limits presented in some regulations. To carry out this study, it had been constructed two numeric models using the computational program SAP 2000, in each it was simulated four characteristic movements of pedestrian action, by their load functions. Once that the space truss deck was already built some tests have been performed, in order to validate the numeric model. It was found that the frequencies obtained in the model are very close to the real ones. Both models have shown a good behavior to vibrations in the transverse direction, since the transverse frequencies are far enough from the range of human action. The vibration in vertical direction is very pronounced, since both decks have fundamental frequencies close to the frequency of some of the simulated movements
    corecore