429 research outputs found

    Nuclear Breakup of Borromean Nuclei

    Get PDF
    We study the eikonal model for the nuclear-induced breakup of Borromean nuclei, using Li11 and He6 as examples. The full eikonal model is difficult to realize because of six-dimensional integrals, but a number of simplifying approximations are found to be accurate. The integrated diffractive and one-nucleon stripping cross sections are rather insensitive to the neutron-neutron correlation, but the two-nucleon stripping does show some dependence on the correlation. The distribution of excitation energy in the neutron-core final state in one-neutron stripping reactions is quite sensitive to the shell structure of the halo wave function. Experimental data favor models with comparable amounts of s- and p-wave in the Li11 halo.Comment: 34 pages REVTeX, 14 postscript figures. Small changes in comparison with experimen

    Charge radius and dipole response of 11^{11}Li

    Get PDF
    We investigate the consistency of the measured charge radius and dipole response of 11^{11}Li within a three-body model. We show how these observables are related to the mean square distance between the 9^9Li core and the center of mass of the two valence neutrons. In this representation we find by considering the effect of smaller corrections that the discrepancy between the results of the two measurements is of the order of 1.5σ\sigma. We also investigate the sensitivity to the three-body structure of 11^{11}Li and find that the charge radius measurement favors a model with a 50% s-wave component in the ground state of the two-neutron halo, whereas the dipole response is consistent with a smaller s-wave component of about 25% value.Comment: 6 pages, 3 figure

    Signature of Shallow Potentials in Deep Sub-barrier Fusion Reactions

    Get PDF
    We extend a recent study that explained the steep falloff in the fusion cross section at energies far below the Coulomb barrier for the symmetric dinuclear system 64Ni+64Ni to another symmetric system, 58Ni+58Ni, and the asymmetric system 64Ni+100Mo. In this scheme the very sensitive dependence of the internal part of the nuclear potential on the nuclear equation of state determines a reduction of the classically allowed region for overlapping configurations and consequently a decrease in the fusion cross sections at bombarding energies far below the barrier. Within the coupled-channels method, including couplings to the low-lying 2+ and 3- states in both target and projectile as well as mutual and two-phonon excitations of these states, we calculate and compare with the experimental fusion cross sections, S-factors, and logarithmic derivatives for the above mentioned systems and find good agreement with the data even at the lowest energies. We predict, in particular, a distinct double peaking in the S-factor for the far subbarrier fusion of 58Ni+58Ni which should be tested experimentally.Comment: 34 pages, 10 figures, to appear in Phys. Rev.

    Recent developments in the eikonal description of the breakup of exotic nuclei

    Full text link
    The study of exotic nuclear structures, such as halo nuclei, is usually performed through nuclear reactions. An accurate reaction model coupled to a realistic description of the projectile is needed to correctly interpret experimental data. In this contribution, we briefly summarise the assumptions made within the modelling of reactions involving halo nuclei. We describe briefly the Continuum-Discretised Coupled Channel method (CDCC) and the Dynamical Eikonal Approximation (DEA) in particular and present a comparison between them for the breakup of 15C on Pb at 68AMeV. We show the problem faced by the models based on the eikonal approximation at low energy and detail a correction that enables their extension down to lower beam energies. A new reaction observable is also presented. It consists of the ratio between angular distributions for two different processes, such as elastic scattering and breakup. This ratio is completely independent of the reaction mechanism and hence is more sensitive to the projectile structure than usual reaction observables, which makes it a very powerful tool to study exotic structures far from stability.Comment: Contribution to the proceedings of the XXI International School on Nuclear Physics and Applications & the International Symposium on Exotic Nuclei, dedicated to the 60th Anniversary of the JINR (Dubna) (Varna, Bulgaria, 6-12 September 2015), 7 pages, 4 figure

    Path integral approach to no-Coriolis approximation in heavy-ion collisions

    Get PDF
    We use the two time influence functional method of the path integral approach in order to reduce the dimension of the coupled-channels equations for heavy-ion reactions based on the no-Coriolis approximation. Our method is superior to other methods in that it easily enables us to study the cases where the initial spin of the colliding particle is not zero. It can also be easily applied to the cases where the internal degrees of freedom are not necessarily collective coordinates. We also clarify the underlying assumptions in our approach.Comment: 11 pages, Latex, Phys. Rev. C in pres

    Systematics of heavy-ion fusion hindrance at extreme sub-barrier energies

    Full text link
    The recent discovery of hindrance in heavy-ion induced fusion reactions at extreme sub-barrier energies represents a challenge for theoretical models. Previously, it has been shown that in medium-heavy systems, the onset of fusion hindrance depends strongly on the "stiffness" of the nuclei in the entrance channel. In this work, we explore its dependence on the total mass and the QQ-value of the fusing systems and find that the fusion hindrance depends in a systematic way on the entrance channel properties over a wide range of systems.Comment: Submitted to Phys. Rev. Lett., 5 pages, 3 figure

    Coulomb excitation at intermediate energies

    Full text link
    Straight line trajectories are commonly used in semi-classical calculations of the first-order Coulomb excitation cross section at intermediate energies, and simple corrections are often made for the distortion of the trajectories that is caused by the Coulomb field. These approximations are tested by comparing to numerical calculations that use exact Coulomb trajectories. In this paper a model is devised for including relativistic effects in the calculations. It converges at high energies towards the relativistic straight-line trajectory approximation and approaches the non-relativistic Coulomb trajectory calculation at low energies. The model is tested against a number of measurements and analyses that have been performed at beam energies between 30 and 70 MeV/nucleon, primarily of quadrupole excitations. Remarkably good agreement is achieved with the previous analyses, and good agreement is also achieved in the few cases, where the B(Eλ\lambda) value is known from other methods. The magnitudes of the relativistic and Coulomb distortion effects are discussed

    3-D unrestricted TDHF fusion calculations using the full Skyrme interaction

    Full text link
    We present a study of fusion cross sections using a new generation Time-Dependent Hartree-Fock (TDHF) code which contains no approximations regarding collision geometry and uses the full Skyrme interaction, including all of the time-odd terms. In addition, the code uses the Basis-Spline collocation method for improved numerical accuracy. A comparative study of fusion cross sections for 16O+16,28O^{16}O + ^{16,28}O is made with the older TDHF results and experiments. We present results using the modern Skyrme forces and discuss the influence of the new terms present in the interaction.Comment: 7 pages, 10 figure
    • 

    corecore