6 research outputs found
Prey choice by facultative predator larvae of Chrysomya albiceps (Diptera: Calliphoridae)
In this study we investigated predation rates on third instar larvae of Chrysomya putoria and C. megacephala by third instar larvae of C. albiceps in a two-choice situation. The highest predation rate occurred on C. putoria larvae and this result is compared to previous experiments, in which C. macellaria larvae were present. Our results suggest that, when C. macellaria is absent C. albiceps larvae attack more C. putoria than C. megacephala larvae. Prey choice decisions and its implications for introduced and native blowflies are discussed
The effect of different proportions of males and females over the Chrysomya albiceps (Wiedemann 1819) (Diptera, Calliphoridae) biotic potential and longevity under laboratory conditions
Chrysomya albiceps specimens were derived from colonies kept under laboratory conditions. The oviposition period, total number of eggs-mass and the weight of the eggs-mass (average/female) presented significant differences between colonies regarding the sexual ratio of 1male/1female (situation I), when compared to the other ratios (1male/3female, situation II), (1male/5female, situation III), (3male/1female, situation IV) and (5 male/1female, situation V). It was ascertained that the increase in the proportion of females, resulted in higher weight and greater number of ovipositions and lenghtening of the period of oviposition, leads to a decrease in their lifespan
Recommended from our members
Forensic acarology: an introduction
Mites can be found in all imaginable terrestrial habitats, in freshwater, and in salt water. Mites can be found in our houses and furnishings, on our clothes, and even in the pores of our skin-almost every single person carries mites. Most of the time, we are unaware of them because they are small and easily overlooked, and-most of the time-they do not cause trouble. In fact, they may even proof useful, for instance in forensics. The first arthropod scavengers colonising a dead body will be flies with phoretic mites. The flies will complete their life cycle in and around the corpse, while the mites may feed on the immature stages of the flies. The mites will reproduce much faster than their carriers, offering themselves as valuable timeline markers. There are environments where insects are absent or rare or the environmental conditions impede their access to the corpse. Here, mites that are already present and mites that arrive walking, through air currents or material transfer become important. At the end of the ninetieth century, the work of Jean Pierre M,gnin became the starting point of forensic acarology. M,gnin documented his observations in 'La Faune des Cadavres' [The Fauna of Carcasses]. He was the first to list eight distinct waves of arthropods colonising human carcasses. The first wave included flies and mites, the sixth wave was composed of mites exclusively. The scope of forensic acarology goes further than mites as indicators of time of death. Mites are micro-habitat specific and might provide evidential data on movement or relocation of bodies, or locating a suspect at the scene of a crime. Because of their high diversity, wide occurrence, and abundance, mites may be of great value in the analysis of trace evidence
Spatio-temporal dynamics and transition from asymptotic equilibrium to bounded oscillations in Chrysomya albiceps (Diptera, Calliphoridae)
The sensitivity of parameters that govern the stability of population size in Chrysomya albiceps and describe its spatial dynamics was evaluated in this study. The dynamics was modeled using a density-dependent model of population growth. Our simulations show that variation in fecundity and mainly in survival has marked effect on the dynamics and indicates the possibility of transitions from one-point equilibrium to bounded oscillations. C. albiceps exhibits a two-point limit cycle, but the introduction of diffusive dispersal induces an evident qualitative shift from two-point limit cycle to a one fixed-point dynamics. Population dynamics of C. albiceps is here compared to dynamics of Cochliomyia macellaria, C. megacephala and C. putoria