66 research outputs found

    Concentration Polarization of High-Density Lipoprotein and Its Relation with Shear Stress in an In Vitro Model

    Get PDF
    The purpose of this study was to determine the concentration polarization of high-density lipoprotein (HDL) at the surface of the carotid artery under conditions of steady flow and to establish its relationship with shear stress using an in vitro vascular simulation model of carotid bifurcation. Shear stress, HDL concentration at the surface, and the ratio of HDL concentration at the surface to concentration in bulk flow were measured at different locations within the model under high-speed (1.451 m/s) and low-speed (0.559 m/s) flow. HDL showed concentration polarization at the surface of the carotid artery model, particularly in the internal carotid artery sinus. With decreasing flow velocity, the shear stress at the surface also decreased, and HDL concentration polarization increased. The concentration polarization of HDL was negatively and strongly correlated with shear stress at both low- (r = −0.872, P < .001) and high-speed flow (r = −0.592, P = .0018)

    Relationship between Concentration Difference of Different Density Lipoproteins and Shear Stress in Atherosclerosis

    Get PDF
    Previous research has observed concentration polarization in LDL and HDL in the arterial system. However, there is no report that links this concentration polarization to the development of vascular atherosclerosis (AS). Therefore, the purpose of this study is to establish the relationship between concentration difference of LDL and HDL and shear stress using a carotid bifurcation vascular model. PTFE was employed to create the carotid bifurcation model. Endothelial cells were coated on the inner wall of the graft. In a recirculation system, HDL and LDL concentration were measured under two different ICA flow velocities at 5 different locations within our model. We report the following: (1) LDL and HDL concentration difference was observed in both high flow and low flow environments; (2) the degree of LDL and HDL concentration polarization varied depending of high flow and low flow environment; (3) absolute values of concentration difference between LDL and HDL at the inner wall surface decreased with the increase in shear stress when shear stress was more than 1.5 Pa. This variation trend would be more pronounced if shear stress were less than 0.5 Pa. Our study suggests that under the action of shear stress, concentration differences of LDL or HDL create a disturbance in the balance of atherogenic factors and anti-As factors, resulting in the occurrence of AS

    Arsenic, Fluoride and Iodine in Groundwater of China

    Get PDF
    Arsenicosis and fluorosis, two endemic diseases known to result from exposure to their elevated concentrations in groundwater of north China used by many rural households for drinking, have been major public health concerns for several decades. Over the last decade, a large number of investigations have been carried out to delineate the spatial distribution and to characterize the chemical compositions of high As and F groundwaters with a focus on several inland basins in north China. Findings from these studies, including improved understanding of the hydrogeological and geochemical factors resulting in their enrichments, have been applied to guide development of clean and safe groundwater in these endemic disease areas. Survey efforts have led to the recognition of iodine in groundwater as an emerging public health concern. This paper reviews the new understandings gained through these studies, including those published in this special issue, and points out the direction for future research that will shed light on safe guarding a long-term supply of low As and F groundwater in these water scarce semi-arid and arid inland basins of north China

    Quadricuspid aortic valve by using intraoperative transesophageal echocardiography

    Get PDF
    Quadricuspid aortic valve is a rare congenital malformation of the aortic valve. Its diagnosis is often missed even with the use of transthoracic echocardiogram. Many of these patients progress to aortic incompetence later in life, hence requiring surgical intervention

    Case report: Unveiling the unforeseen: a catastrophic encounter of giant aortic aneurysm rupture during re-sternotomy in a patient with bicuspid aortic valve and previous surgical aortic valve replacement

    Get PDF
    Due to structural abnormalities in the leaflets, patients with bicuspid aortic valve (BAV) may develop isolated aortic valve disease, such as aortic regurgitation, aortic stenosis, or a combination of both. In addition to valvular pathology, numerous studies have indicated that approximately 40% of BAV patients exhibit aortic pathologies characterized by aortic dilatation. According to guidelines for valvular diseases, patients with BAV who require surgical aortic valve replacement (SAVR) and have a diameter of the aortic sinuses or ascending aorta ≥4.5 cm are recommended to undergo concomitant replacement of the aortic sinuses or ascending aorta. However, we encountered a case in 2020 involving a patient with severe aortic regurgitation due to BAV and an ascending aortic diameter of 4.2 cm. This patient underwent SAVR and ascending aortoplasty surgery at our center. Remarkably, three years postoperatively, the patient's aortic diameter rapidly expanded by nearly threefold, which also suggests the risk of encountering a giant aortic root aneurysm during reoperation. Unfortunately, a fatal rupture of a giant aortic root aneurysm was encountered during re-sternotomy. Fortunately, with adequate preoperative planning, we successfully managed to avert this perilous situation. The patient recovered without complications and was discharged on the 8th day. Individualized surgical plans were formulated based on a comprehensive evaluation of the perioperative conditions

    Loess plateau storage of northeastern Tibetan plateau-derived Yellow River sediment

    Get PDF
    Marine accumulations of terrigenous sediment are widely assumed to accurately record climatic- and tectonic-controlled mountain denudation and play an important role in understanding late Cenozoic mountain uplift and global cooling. Underpinning this is the assumption that the majority of sediment eroded from hinterland orogenic belts is transported to and ultimately stored in marine basins with little lag between erosion and deposition. Here we use a detailed and multi-technique sedimentary provenance dataset from the Yellow River to show that substantial amounts of sediment eroded from Northeast Tibet and carried by the river’s upper reach are stored in the Chinese Loess Plateau and the western Mu Us desert. This finding revises our understanding of the origin of the Chinese Loess Plateau and provides a potential solution for mismatches between late Cenozoic terrestrial sedimentation and marine geochemistry records, as well as between global CO2 and erosion records

    A Typical Bilateral Atrial Myxoma: A Case Report

    No full text
    Myxoma is a rare type of tumor which have an incidence of 0.0017% among the general population. Cardiac myxomas which arise from two different heart chambers is even extremely rare; we herein report a unique case of male patient with bilateral myxoma
    corecore