1,314 research outputs found

    Institutional experience with a rotational total skin electron irradiation (RTSEI) technique—A three decade review (1981–2012)

    Get PDF
    AbstractTotal skin electron irradiation (TSEI) for patients with cutaneous lymphomas is technically challenging, and numerous approaches have been developed to overcome the many field matching problems associated with such a large and complex treatment volume. Since 1981 we have delivered TSEI using a rotational total skin electron irradiation (RTSEI) technique in conjunction with patch, treat and boost fields in order to provide complete skin and dose coverage. Initially we used a 6MeV electron beam at an extended source-skin distance (SSD) on a modified linear accelerator. More recently we began using a high dose rate electron mode on a commercially available linear accelerator. The RTSEI technique allows the delivery of a seamless surface dose to the majority of the patient's skin surface in a single treatment. In this review paper we present our three-decade experience with the technical development, dosimetry, treatment delivery and clinical outcomes of our RTSEI technique

    Parametric Analysis of a Heavy Metal Sorption Isotherm Based on Fractional Calculus

    Get PDF
    Heavy metals are widely recognized as being hazardous to human health and environmentally aggressive. The literature reports different approaches for lead removal, for example, water hyacinths. Heavy metal sorption isotherm modeling represents an important tool towards the study of equilibrium conditions. Fractional calculus represents a novel approach and a growing research field for process modeling, based on derivatives of arbitrary order. Recently, a novel isotherm based on fractional calculus was proposed for lead sorption using water hyacinth (Eichhornia crassipes). This paper reports a general procedure on error analysis and its influence on parameter estimation. It was applied to mathematical models based on fractional differential equations, focusing on a heavy metal novel isotherm sorption model. Parameter variance was calculated by using two different approaches (with the complete Hessian matrix and with a simplified Hessian matrix), and joint parameter confidence regions were generated, being successfully able to show that the fractional nature of the model is statistically valid

    Magnetorheological landing gear: 2. Validation using experimental data

    Get PDF
    Aircraft landing gears are subjected to a wide range of excitation conditions with conflicting damping requirements. A novel solution to this problem is to implement semi-active damping using magnetorheological (MR) fluids. In part 1 of this contribution, a methodology was developed that enables the geometry of a flow mode MR valve to be optimized within the constraints of an existing passive landing gear. The device was designed to be optimal in terms of its impact performance, which was demonstrated using numerical simulations of the complete landing gear system. To perform the simulations, assumptions were made regarding some of the parameters used in the MR shock strut model. In particular, the MR fluid's yield stress, viscosity, and bulk modulus properties were not known accurately. Therefore, the present contribution aims to validate these parameters experimentally, via the manufacture and testing of an MR shock strut. The gas exponent, which is used to model the shock strut's nonlinear stiffness, is also investigated. In general, it is shown that MR fluid property data at high shear rates are required in order to accurately predict performance prior to device manufacture. Furthermore, the study illustrates how fluid compressibility can have a significant influence on the device time constant, and hence on potential control strategies

    Atypical chemokine receptor 4 shapes activated B cell fate

    Get PDF
    Activated B cells can initially differentiate into three functionally distinct fates-early plasmablasts (PBs), germinal center (GC) B cells, or early memory B cells-by mechanisms that remain poorly understood. Here, we identify atypical chemokine receptor 4 (ACKR4), a decoy receptor that binds and degrades CCR7 ligands CCL19/CCL21, as a regulator of early activated B cell differentiation. By restricting initial access to splenic interfollicular zones (IFZs), ACKR4 limits the early proliferation of activated B cells, reducing the numbers available for subsequent differentiation. Consequently, ACKR4 deficiency enhanced early PB and GC B cell responses in a CCL19/CCL21-dependent and B cell-intrinsic manner. Conversely, aberrant localization of ACKR4-deficient activated B cells to the IFZ was associated with their preferential commitment to the early PB linage. Our results reveal a regulatory mechanism of B cell trafficking via an atypical chemokine receptor that shapes activated B cell fate

    Institutional experience with a rotational total skin electron irradiation (RTSEI) technique—A three decade review (1981–2012)

    Get PDF
    Total skin electron irradiation (TSEI) for patients with cutaneous lymphomas is technically challenging, and numerous approaches have been developed to overcome the many field matching problems associated with such a large and complex treatment volume. Since 1981 we have delivered TSEI using a rotational total skin electron irradiation (RTSEI) technique in conjunction with patch, treat and boost fields in order to provide complete skin and dose coverage. Initially we used a 6[[ce:hsp sp="0.25"/]]MeV electron beam at an extended source-skin distance (SSD) on a modified linear accelerator. More recently we began using a high dose rate electron mode on a commercially available linear accelerator. The RTSEI technique allows the delivery of a seamless surface dose to the majority of the patient's skin surface in a single treatment. In this review paper we present our three-decade experience with the technical development, dosimetry, treatment delivery and clinical outcomes of our RTSEI technique
    • …
    corecore