138 research outputs found

    Size Dependence of the Magnetic and Electrical Properties of the Spin-Valve Transistor

    Get PDF
    The electrical and magnetic properties of the spin-valve transistor (SVT) are investigated as a function of transistor size. A new fabrication process, designed to study the size dependence of the SVT properties, uses: silicon-on-insulator (SOI) wafers, a combination of ion beam and wet etching and a negative tone photoresist (SU8) as an insulating layer. The Si/Pt emitter and Si/Au collector Schottky barrier height do not depend on the transistor dimensions. The parasitic leakage current of the Si/Au collector is, however, proportional to its area. The relative collector current change with magnetic field is 240%, independent of size, while the transfer ratio starts to decrease for SVTs with an emitter area below 25 Ă— 25 Âżm2. The maximum input current is found to be limited by the maximum current density allowed in the base (1.7 Ă— 107 A/cm2), which is in agreement with the maximum current density for spin valve

    Interface, Volume, and Thermal Attenuation of Hot-Electron Spins in Ni<sub>80</sub>Fe<sub>20</sub> and Co

    Get PDF
    The relative importance of interface, volume, and thermal scattering in spin-dependent hot-electron transmission of magnetic trilayers is quantified. While interfaces produce significant attenuation (factor 2.2 per interface), the spin asymmetry is dominated by volume scattering. Extracted thermal attenuation lengths (130 Ă… at 300 K for Ni.......Fe...) show that thermal spin-wave scattering is stronger than hith-erto assumed. This suggests that spontaneous spin-wave emission, rather than the details of the spin-dependent band structure, may cause the strong filtering of minority hot-electron spins

    Analysis of the Transport Process Providing Spin Injection through an Fe/AlGaAs Schottky Barrier

    Full text link
    Electron spin polarizations of 32% are obtained in a GaAs quantum well via electrical injection through a reverse-biased Fe/AlGaAs Schottky contact. An analysis of the transport data using the Rowell criteria demonstrates that single step tunneling is the dominant transport mechanism. The current-voltage data show a clear zero-bias anomaly and phonon signatures corresponding to the GaAs-like and AlAs-like longitudinal-optical phonon modes of the AlGaAs barrier, providing further evidence for tunneling. These results provide experimental confirmation of several theoretical analyses indicating that tunneling enables significant spin injection from a metal into a semiconductor.Comment: 4 pages, 4 figures, submitted to AP

    Electrical Spin Pumping of Quantum Dots at Room Temperature

    Full text link
    We report electrical control of the spin polarization of InAs/GaAs self-assembled quantum dots (QDs) at room temperature. This is achieved by electrical injection of spin-polarized electrons from an Fe Schottky contact. The circular polarization of the QD electroluminescence shows that a 5% electron spin polarization is obtained in the InAs QDs at 300 K, which is remarkably insensitive to temperature. This is attributed to suppression of the spin relaxation mechanisms in the QDs due to reduced dimensionality. These results demonstrate that practical regimes of spin-based operation are clearly attainable in solid state semiconductor devices.Comment: 4 figures, accepted by Appl. Phys. Let

    Heteroepitaxial growth of ferromagnetic MnSb(0001) films on Ge/Si(111) virtual substrates

    Get PDF
    Molecular beam epitaxial growth of ferromagnetic MnSb(0001) has been achieved on high quality, fully relaxed Ge(111)/Si(111) virtual substrates grown by reduced pressure chemical vapor deposition. The epilayers were characterized using reflection high energy electron diffraction, synchrotron hard X-ray diffraction, X-ray photoemission spectroscopy, and magnetometry. The surface reconstructions, magnetic properties, crystalline quality, and strain relaxation behavior of the MnSb films are similar to those of MnSb grown on GaAs(111). In contrast to GaAs substrates, segregation of substrate atoms through the MnSb film does not occur, and alternative polymorphs of MnSb are absent

    Paleomagnetism indicates that primary magnetite in zircon records a strong Hadean geodynamo.

    Get PDF
    Determining the age of the geomagnetic field is of paramount importance for understanding the evolution of the planet because the field shields the atmosphere from erosion by the solar wind. The absence or presence of the geomagnetic field also provides a unique gauge of early core conditions. Evidence for a geomagnetic field 4.2 billion-year (Gy) old, just a few hundred million years after the lunar-forming giant impact, has come from paleomagnetic analyses of zircons of the Jack Hills (Western Australia). Herein, we provide new paleomagnetic and electron microscope analyses that attest to the presence of a primary magnetic remanence carried by magnetite in these zircons and new geochemical data indicating that select Hadean zircons have escaped magnetic resetting since their formation. New paleointensity and Pb-Pb radiometric age data from additional zircons meeting robust selection criteria provide further evidence for the fidelity of the magnetic record and suggest a period of high geomagnetic field strength at 4.1 to 4.0 billion years ago (Ga) that may represent efficient convection related to chemical precipitation in Earth's Hadean liquid iron core

    Qualitative aspects and validation of a screening method for pesticides in vegetables and fruits based on liquid chromatography coupled to full scan high resolution (Orbitrap) mass spectrometry

    Get PDF
    The analytical capabilities of liquid chromatography with single-stage high-resolution mass spectrometry have been investigated with emphasis on qualitative aspects related to selective detection during screening and to identification. The study involved 21 different vegetable and fruit commodities, a screening database of 556 pesticides for evaluation of false positives, and a test set of 130 pesticides spiked to the commodities at 0.01, 0.05, and 0.20 mg/kg for evaluation of false negatives. The final method involved a QuEChERS-based sample preparation (without dSPE clean up) and full scan acquisition using alternating scan events without/with fragmentation, at a resolving power of 50,000. Analyte detection was based on extraction of the exact mass (±5 ppm) of the major adduct ion at the database retention time ±30 s and the presence of a second diagnostic ion. Various options for the additional ion were investigated and compared (other adduct ions, M + 1 or M + 2 isotopes, fragments). The two-ion approach for selective detection of the pesticides in the full scan data was compared with two alternative approaches based on response thresholds. Using the two-ion approach, the number of false positives out of 11,676 pesticide/commodity combinations targeted was 36 (0.3 %). The percentage of false negatives, assessed for 2,730 pesticide/commodity combinations, was 13 %, 3 %, and 1 % at the 0.01-, 0.05-, and 0.20-mg/kg level, respectively (slightly higher with fully automated detection). Following the SANCO/12495/2011 protocol for validation of screening methods, the screening detection limit was determined for 130 pesticides and found to be 0.01, 0.05, and ≥0.20 mg/kg for 86, 30, and 14 pesticides, respectively. For the detected pesticides in the spiked samples, the ability for unambiguous identification according to EU criteria was evaluated. A proposal for adaption of the criteria was made

    Giant enhancement of spin accumulation and long-distance spin precession in metallic lateral spin valves

    Full text link
    The nonlocal spin injection in lateral spin valves is highly expected to be an effective method to generate a pure spin current for potential spintronic application. However, the spin valve voltage, which decides the magnitude of the spin current flowing into an additional ferromagnetic wire, is typically of the order of 1 {\mu}V. Here we show that lateral spin valves with low resistive NiFe/MgO/Ag junctions enable the efficient spin injection with high applied current density, which leads to the spin valve voltage increased hundredfold. Hanle effect measurements demonstrate a long-distance collective 2-pi spin precession along a 6 {\mu}m long Ag wire. These results suggest a route to faster and manipulable spin transport for the development of pure spin current based memory, logic and sensing devices.Comment: 23 pages, 4 figure
    • …
    corecore