76 research outputs found

    Selection of design and operational parameters in spindle-holder-tool assemblies for maximum chatter stability by using a new analytical model

    Get PDF
    In this paper, using the analytical model developed by the authors, the effects of certain system design and operational parameters on the tool point FRF, thus on the chatter stability are studied. Important conclusions are derived regarding the selection of the system parameters at the stage of machine tool design and during a practical application in order to increase chatter stability. It is demonstrated that the stability diagram for an application can be modified in a predictable manner in order to maximize the chatter-free material removal rate by selecting favorable system parameters using the analytical model developed. The predictions of the model, which are based on the methodology proposed in this study, are also experimentally verified

    Nanoscale flexoelectric energy harvesting

    Get PDF
    AbstractOne of the most tantalizing applications of piezoelectricity is to harvest energy from ambient mechanical vibrations for powering micro and nano devices. However, piezoelectricity is restricted only to certain materials and is severely compromised at high temperatures. In this article, we examine in detail, the possibility of using the phenomenon of flexoelectricity for energy harvesting. The flexoelectric effect is universally present in all dielectrics and exhibits a strong scaling with size. Using a simple beam-based paradigmatical design, we theoretically and computationally examine flexoelectric energy harvesting under harmonic mechanical excitation. We find that the output power density and conversion efficiency increase significantly when the beam thickness reduces from micro to nanoscale and flexoelectricity-based energy harvesting can be a viable alternative to piezoelectrics. Specifically, the conversion efficiency in flexoelectric transduction at sub-micron thickness levels is observed to increase by two orders of magnitude as the thickness is reduced by an order of magnitude. The flexoelectric energy harvester works even for a single layer beam with a symmetric cross section which is not possible in piezoelectric energy harvesting. Our results also pave the way for exploration of high temperature energy harvesting since unlike piezoelectricity, flexoelectricity persists well beyond the Curie temperatures of the high electromechanical coupling ferroelectrics that are often used

    Experimentally validated geometrically exact model for extreme nonlinear motions of cantilevers

    Get PDF
    A unique feature of flexible cantilevered beams, which is used in a range of applications from energy harvesting to bio-inspired actuation, is their capability to undergo motions of extremely large amplitudes. The well-known third-order nonlinear cantilever model is not capable of capturing such a behaviour, hence requiring the application of geometrically exact models. This study, for the first time, presents a thorough experimental investigation on nonlinear dynamics of a cantilever under base excitation in order to capture extremely large oscillations to validate a geometrically exact model based on the centreline rotation. To this end, a state-of-the-art in vacuo base excitation experimental set-up is utilised to excite the cantilever in the primary resonance region and drive it to extremely large amplitudes, and a high-speed camera is used to capture the motion. A robust image processing code is developed to extract the deformed state of the cantilever at each frame as well as the tip displacements and rotation. For the theoretical part, a geometrically exact model is developed based on the Euler–Bernoulli beam theory and inextensibility condition, while using Kelvin–Voigt material damping. To ensure accurate predictions, the equation of motion is derived for the centreline rotation and all terms are kept geometrically exact throughout the derivation and discretisation procedures. Thorough comparisons are conducted between experimental and theoretical results in the form of frequency response diagrams, time histories, motion snapshots, and motion videos. It is shown that the predictions of the geometrically exact model are in excellent agreement with the experimental results at both relatively large and extremely large oscillation amplitudes

    Nanoscale flexoelectric energy harvesting

    Get PDF
    a b s t r a c t One of the most tantalizing applications of piezoelectricity is to harvest energy from ambient mechanical vibrations for powering micro and nano devices. However, piezoelectricity is restricted only to certain materials and is severely compromised at high temperatures. In this article, we examine in detail, the possibility of using the phenomenon of flexoelectricity for energy harvesting. The flexoelectric effect is universally present in all dielectrics and exhibits a strong scaling with size. Using a simple beam-based paradigmatical design, we theoretically and computationally examine flexoelectric energy harvesting under harmonic mechanical excitation. We find that the output power density and conversion efficiency increase significantly when the beam thickness reduces from micro to nanoscale and flexoelectricitybased energy harvesting can be a viable alternative to piezoelectrics. Specifically, the conversion efficiency in flexoelectric transduction at sub-micron thickness levels is observed to increase by two orders of magnitude as the thickness is reduced by an order of magnitude. The flexoelectric energy harvester works even for a single layer beam with a symmetric cross section which is not possible in piezoelectric energy harvesting. Our results also pave the way for exploration of high temperature energy harvesting since unlike piezoelectricity, flexoelectricity persists well beyond the Curie temperatures of the high electromechanical coupling ferroelectrics that are often used

    An electromechanical finite element model for piezoelectric energy harvester plates

    Get PDF
    a b s t r a c t Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper, an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton's principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit

    A New Approach to Sea Transportation: An Application in Turkey

    Get PDF
    This study has been conducted to detect the strengths and the improvement requiring areas of sea transportation in Turkey via SWOT analysis, and the opportunities this sector brings to Turkey and the threats that might appear have been put forward in several aspects. When the necessary advances have been made considering the outcomes of this study, it can be foreseen that Turkish navigation can make a swift progress and assume its place in the top 5 mercantile fleets of the World Trade Fleet. Moreover, this new approach that can be developed through the example of Turkey, especially in the context of SWOT analysis methodology, can get to be seen as a role model before the other developing countries.Sea transportation is not merely a transportation sector. Along with goods and human transportation, ship building industry, port services, sea insurance and sea tourism are among the many naval activities. Because of all these, sea transportation has a significant place in international trade. The overall commercial value of world trade mounting up to 15 trillion US dollars, 9 trillion dollars of this has been conducted via sea transportation. In other words, 60 percent of world commerce has been done through sea transportation (GISBIR, 2013). Furthermore, the volume of the dry bulk market via sea transportation is expected to grow by 6 percent between the years 2014 and 2018 (GISBIR, 2013)

    Surveilling brain damage using brain biomarkers in hypoglycemic neonatal calves with diarrhea

    Get PDF
    Hypoglycemia is a condition associated with neonatal diarrhea in calves, leading to increased mortality and neurological clinical signs. The aim of the present study was to determine the development of brain damage in hypoglycemic calves with neonatal diarrhea and the diagnostic and prognostic significance of these biomarkers. Ten healthy and 50 hypoglycemic calves with diarrhea were included in the study. Clinical examination, blood gases and complete blood count were performed at admission. Blood serum calcium-binding protein B (S100B), neuron-specific enolase (NSE), glial fibrillary acidic protein (GFAP), ubiquitin carboxyl-terminal hydrolysis isoenzyme-1 (UCHL-1), activitin A (ACT), adrenomodullin (AM) concentrations, and creatine kinase-BB (CK-BB) enzyme activity were measured using commercial bovine-specific ELISA kits to assess brain damage. Of the hypoglycemic calves enrolled in the study, 13 (26%) survived and 37 (74%) died. In addition, 32 (64%) of the calves had severe acidosis and 24 (48%) had sepsis. S100B, GFAP, UCHL-1, CK-BB (p < 0.001) and NSE (p < 0.05) concentrations were significantly higher in hypoglycemic calves compared to healthy calves, while ACT concentrations were lower. Blood glucose concentration was negatively correlated with serum S100B, GFAP, UCHL-1, and CK-BB enzyme activity and positively correlated with ACT in hypoglycemic calves (p < 0.01). Brain injury biomarkers were not predictive of mortality (p > 0.05). Morever, severe hypoglycemia, severe acidosis and sepsis variables were not found to have sufficient capacity to predict mortality when considered alone or together (p > 0.05). In conclusion, brain damage may develop as a consequence of hypoglycemia in calves. S100B, NSE, GFAP, UCHL-1, ACT, and CK-BB concentrations can be used to diagnose brain damage in hypoglycemic calves. However, the variables of severe hypoglycemia, severe acidosis, and sepsis together with the biomarkers of brain injury have a limited value in predicting the prognosis of neonatal calves with diarrhea
    • …
    corecore