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One of the most tantalizing applications of piezoelectricity is to harvest energy from ambient mechanical
vibrations for powering micro and nano devices. However, piezoelectricity is restricted only to certain
materials and is severely compromised at high temperatures. In this article, we examine in detail, the
possibility of using the phenomenon of flexoelectricity for energy harvesting. The flexoelectric effect is
universally present in all dielectrics and exhibits a strong scaling with size. Using a simple beam-based
paradigmatical design, we theoretically and computationally examine flexoelectric energy harvesting
under harmonic mechanical excitation. We find that the output power density and conversion efficiency
increase significantly when the beam thickness reduces from micro to nanoscale and flexoelectricity-
based energy harvesting can be a viable alternative to piezoelectrics. Specifically, the conversion effi-
ciency in flexoelectric transduction at sub-micron thickness levels is observed to increase by two orders
of magnitude as the thickness is reduced by an order of magnitude. The flexoelectric energy harvester
works even for a single layer beam with a symmetric cross section which is not possible in piezoelectric
energy harvesting. Our results also pave the way for exploration of high temperature energy harvesting
since unlike piezoelectricity, flexoelectricity persists well beyond the Curie temperatures of the high elec-
tromechanical coupling ferroelectrics that are often used.

� 2014 Elsevier Ltd. All rights reserved.
1. Introduction

Harvesting ambient waste energy into usable energy has
received increasing attention over the last few years (Hudak and
Amatucci, 2008; Elvin and Erturk, 2013). Efficient conversion of
the ubiquitous ambient mechanical vibrations to electric energy
for the powering of micro and nano systems, without the use
of batteries, is an intensely researched subject. In particular,
piezoelectric materials, as transducers between mechanical and
electrical stimuli, are usually considered to be the ideal choice
for such energy harvesting due to their high power density and
ease of application (Anton and Sodano, 2007; Cook-Chennault
et al., 2008; Priya, 2007). The applications of piezoelectric energy
harvesting range from shoe-mounted inserts (Kymissis et al.,
1998; Shenck and Paradiso, 2001) to unmanned aerial vehicles
(Anton et al., 2012). Micro and nano implementations of piezoelec-
tric energy harvesting have also received growing attention in the
last few years due to the developments in ferroelectric thin
films for MEMS (Trolier-McKinstry and Muralt, 2004; Jeon, 2005;
Muralt et al., 2009) and non-ferroelectric nano wires NEMS
(Wang and Song, 2006; Xu et al., 2010).

Recently, a somewhat understudied electromechanical cou-
pling, flexoelectricity, has attracted a fair amount of attention from
both fundamental and applications points of view leading to inten-
sive experimental (Cross, 2006; Ma and Cross, 2001, 2002, 2003,
2006; Catalan et al., 2004; Zubko et al., 2007; Fu et al., 2006,
2007) and theoretical work (Sharma et al., 2007; Majdoub et al.,
2009a; Eliseev et al., 2009, 2011; Maranganti and Sharma, 2009;
Majdoub et al., 2008a,b, 2009b,c; Sharma et al., 2010, 2012;
Gharbi et al., 2011; Kalinin and Meunier, 2008; Dumitrica et al.,
2002). Piezoelectricity is restricted to only certain crystal struc-
tures and refers to a linear coupling between the development of
polarization due to the action of uniform deformation and vice
versa. In contrast, flexoelectricity links strain gradients to polariza-
tion and, in principle, exists in all dielectrics. In other words, even
in non-piezoelectric materials, strain gradients can lead to the
development of polarization. This effect is generally small but sym-
metry allows for its universal presence—unlike piezoelectricity.
The reader is referred to the following articles for a detailed
review: Refs. Tagantsev (1986, 2009), Maranganti et al. (2006),
Nguyen et al. (2013) and Eliseev et al. (2011). Since strain gradient
scales with feature size, and high values are easily obtainable at
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small length scales, flexoelectricity is expected to be significant at
the micro and nanoscale possibly outperforming piezoelectricity in
several scenarios. It is worth while to point out that flexoelectricity
appears to have several ramifications for biophysics as well. For
example, electromechanical transduction related to mammalian
hearing appear to be dictated by flexoelectricity of biological mem-
branes (Brownell et al., 2001, 2003; Raphael et al., 2000).

A commonly encountered problem in piezoelectric devices is
electric fatigue. It is found that the switching polarization decreases
significantly in some piezoelectric materials after some switching
cycles (Jiang et al., 1994). Although the mechanism for this fatigue
is still not full understood, some possible causes includes: transi-
tion of internal structure into a more stable configuration
(Quarrie, 1953), the appearance of microcracks (Carl, 1975;
Salaneck, 1972), and structural inhomogeneity which reduce the
domain wall mobility (Williams, 1965). Since flexoelectricity
allows a broader range of choices for the material, we can carefully
choose those materials with higher fatigue resistance.

In this paper, we propose a flexoelectric energy harvester which
shares some similarities but is, in many ways, quite different from
the piezoelectric counterparts. The flexoelectric energy harvester is
simpler in structure, allows a broader range of materials choice and
exhibits strong size-scaling making it ideal for some micro scale
and possibly all nanoscale applications. In Section 2, we present
the main formulation and derive the requisite governing equations.
In Section 3, we solve the simplest possible energy harvesting
problem assuming harmonic base excitation. Based on the solu-
tion, the performance of the flexoelectric energy harvester is ana-
lyzed in Section 4. In particular, the size effect is studied in detail.
2. Electroelastic system and mathematical formulation

The flexoelectric energy harvester configuration investigated in
this work is shown in Fig. 1. The flexoelectric cantilever beam is
coated by perfectly conductive electrodes on its top and bottom sur-
faces. We assume that the electrode layers are very thin so that their
contribution to the vibration of the cantilever can be neglected
while their presence can easily be incorporated by preserving the
centrosymmetry. The coordinate system and the resulting position
coordinates x1; x2; x3 are shown in Fig. 1. The longitudinal axis is
denoted by x1. The cantilever beam is mounted to a base moving
in the x3 direction. The transverse base displacement is denoted
by wbðtÞ. Due to the movement of the base, the cantilever beam
undergoes bending vibrations. Dynamic strain gradient associated
with vibration results in an alternating potential difference across
the electrodes. The electrodes are connected to a resistive load (R)
to quantify the electrical power output. Although the internal resis-
tance of the dielectric beam is not taken into account, it can easily by
considered as a resistor connected in parallel to the load resistance.
2.1. Variational principle for flexoelectricity

There are several approaches for formulating the electrome-
chanical coupling in deformable materials. A particularly elegant
Fig. 1. A centrosymmetric flexoelectric energy harvester under base excitation.
exposition has been recently presented by Liu (2014). Based on
Liu’s work, Deng et al. (2014) studied the flexoelectricity in softma-
terials. Other insightful works and alternative ways of formulating
electrostatics of deformable bodies may also be referred to
Dorfmann and Ogden (2005), McMeeking and Landis (2005), Suo
et al. (2008), Steigmann (2009), Eringen and Maugin (1990) and
Toupin (1956). Since the majority of the literature on linear active
materials (such as piezoelectric dielectrics) follows Mindlin’s
approach (Mindlin, 1961, 1968; Tiersten, 1967), we have followed
likewise.

Neglecting fringe fields, the variational principle for flexoelec-
tric body can be written in the following form:

d
Z t2

t1

dt
Z

V

1
2
qj _umj2 � WL � 1

2
�0jr/j2 þ P � r/

� �� �
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@V
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where um and / are the absolute displacement and potential field in
the beam, P is the polarization density, WL is the internal energy
density, q and E0 correspond to the external body force and the
external electric field, respectively. Because of the conductive elec-
trodes coated on the surface, a boundary integration term is added
here. This last term corresponds to the virtual work done by moving
charges on to or out of the electrodes as a product of the variation
of potential / and the average electric displacement eD. Note that
the bulk electric displacement is related to the polarization by
��0r/þ P.

At the outset we assume a linearized setting. Then the internal
energy density WL can be written as (Sahin and Dost, 1988;
Sharma et al., 2007)

WL ¼ 1
2

P � aPþ 1
2

S � cSþ P � dSþ P � frruþ 1
2
rru � grru ð2Þ

where u is the displacement field relative to the moving base
u ¼ fum

1 ; u
m
2 ;u

m
3 �wbðtÞgT

; S ¼ 1
2 ðruþ ðruÞTÞ is the infinitesimal

strain tensor, andrru is the strain gradient tensor. The coefficients
a; c;d; f, and g are material properties, i.e., a is the reciprocal dielec-
tric susceptibility which relates to relative permittivity �r and the
vacuum permittivity �0 by a ¼ 1

ð�r�1Þ�0
; c corresponds to elastic mod-

ulus, d and f are the piezoelectric and flexoelectric constants,
respectively. The parameter g is nonzero only if the strain gradient
is considered. g relates strain gradientrru to its energy conjugate,
high order stress tensor (Majdoub et al., 2008a).

The base movement wbðtÞ is the given Dirichlet boundary con-
dition, so we have dum ¼ du. For independent P;u, and /, we have
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and
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Then, from Eq. (1), we have the Euler–Lagrange equations
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Div ��0r/þ Pð Þ ¼ 0
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in the domain V and the corresponding boundary conditions



Fig. 2. Polarization due to bending of a centrosymmetric beam. (For interpretation
of the references to colour in this figure caption, the reader is referred to the web
version of this article.)
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��0r/þ Pð Þ �N ¼ eD
@WL

@S
� Div @WL

@rru

 !" #
�N ¼ 0

@WL

@rru

 !
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ð5Þ

on its boundary C. Where N is the direction normal to C and eD is the
average electric displacement.

2.2. Flexoelectric Euler–Bernoulli beam model

The deformation of the cantilever beam is assumed to be small.
To illustrate the central ideas of flexoelectric energy harvesting, we
use the Euler–Bernoulli model. The key conclusions, that we are
interested in emphasizing in this work, are unlikely to be affected
by this assumption. Future works may consider more sophisticated
beam-assumptions, in particular nonlinear effects. The relative dis-
placement field in the Euler–Bernoulli model is:

u ¼ �x3
@wðx1; tÞ
@x1

;0;wðx1; tÞ
� 	T

ð6Þ

where wðx1; tÞ is the transverse displacement of the neutral surface
at point x1 and time t. From this displacement field, the normal
strain in x1 direction is the only non-zero strain component which
can be written as

S11 ¼ �x3
@2w
@x2

1

ð7Þ

The non-zero strain gradient components are

S11;1 ¼ �x3
@3w
@x3

1

; S11;3 ¼ �
@2w
@x2

1

ð8Þ

where S11;1 is small as compared to S11;3 due to the thin beam
assumption. Therefore the component S11;1 is ignored in the present
work.

Generally, strain gradient S11;3 will induce the separation of
positive and negative charge centers. A schematic representation
for the polarization induced by strain gradient is shown in Fig. 2.
The blue and red particles represent the negative and positive
material particles in a unit cell. As can be seen from Fig. 2, after
deformation, the induced polarization is generated along the x3

direction. The polarization density field within the cantilever beam
has the following form:

Pðx1; x3; tÞ ¼ f0;0; Pðx1; x3; tÞgT ð9Þ

Given the above assumptions, and settings a ¼ a33; c ¼ c1111;

d ¼ d311; f ¼ f3113, and g ¼ g113113, the internal energy density WL

is rewritten as:
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Using the above expression for internal energy density, the left
hand side of Eq. (3) can be written asZ t2
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There are no external body forces or electric fields in the present
work. Then (1) can be further written asZ t2
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where the kinetic energy contribution from the rotary inertia is
neglected. It should also be noted that the mechanical dissipation
mechanism will be included later in the form of proportional damp-
ing whereas dielectric losses are neglected in this framework.

In the above equation, dP is arbitrary, so we have

aP � dx3
@2w
@x2

1

� f
@2w
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1

þ @/
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¼ 0 ð13Þ

Substituting Eq. (13) into the above variational equation and
changing the volume integration

R
V into

R L
0

R
A (A is the cross section

of the beam), we obtain the following variational equation without
the polarization density P:Z t2
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dt
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where ðAP ;HP ; IPÞ ¼
R

Að1; x3; x2
3ÞdA and HP vanishes for a structure

that is symmetric with respect to the neutral axis (x1-axis) of the
beam. Furthermore we define the effective bending rigidity

ðEIÞ� ¼ c � d2

a

� �
IP � 2df

a HP � f 2

a � g
� �

AP which describes the resis-

tance of the flexoelectric beam to bending. A limitation in the linear
framework is that, beyond a certain critical point the effective bend-
ing rigidity may turn negative. Future work may consider a nonlin-
ear framework to alleviate this issue. The present work uses the
geometrically and electroelastically linear framework to explore
the basic phenomena within the applicable range.

It is worthwhile to mention that, in reality, / is a function of both
time t and the coordinates x1; x3. However, since there are no free
charges inside the beam and the beam considered here is very thin,
it is reasonable to assume that the self-field inside the beam is inde-
pendent of the spatial coordinates implying that E3 ¼ � @/

@x3
¼ const:

at an arbitrary instant of time. Given the top and bottom electrode
boundary conditions, we further have E3 ¼ �vðtÞ=h where vðtÞ is
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the potential difference between the two conductive electrodes. For
the same reason, we also have E1 ¼ � @/

@x1
¼ 0 at the top and bottom

surfaces. So, for the thin beam case, it is reasonable to assume
E1 ¼ 0 through out the whole beam. Under these linear assump-
tions, we can rewrite the above equation asZ t2

t1

dt
Z L
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The current iðtÞ flows through the resistor R must be equal to
the time rate of change of the average electric displacementeD3 ¼ 1

h

R
V D3dV , resulting in the electrical circuit equation with

flexoelectric coupling:
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3. Solution and frequency response

We adopt the assumed-modes method (Erturk and Inman,
2011; Erturk, 2012) to solve the energy harvesting problem posed
in the preceding section. The assumed-modes method employs a
series discretization approach that is similar to the Rayleigh–Ritz
method (Meirovitch, 2001). In fact these two techniques yield
the same results for the same admissible functions. The distrib-
uted-parameter variable in the mechanical domain is wðx1; tÞ
whereas the electrical variable is vðtÞ. The following finite series
is used to represent the mechanical response of the beam:

wðx1; tÞ ¼
XN

k¼1

akðtÞnkðx1Þ ð16Þ

where N is the number of modes used in the series discretization,
nkðx1Þ are the kinematically admissible trial functions which satisfy
the essential boundary conditions, while akðtÞ are unknown gener-
alized coordinates. If the problem has an exact solution, the eigen-
functions are available (as in the uniform cross-section cantilever
case shown in Fig. 1 and studied in this work), the admissible func-
tions can be taken as the eigenfunctions and convergence is not an
issue. However, for problems with no exact solution (such as a vary-
ing cross-section problem), sufficient number (N) of admissible
functions must be used to ensure convergence.

For the symmetric Euler–Bernoulli cantilever beam studied
here, the trial function is taken to be the eigenfunction (Erturk
and Inman, 2009, 2011) is given by

nkðx1Þ¼ cos
kk

L
x1�cosh

kk

L
x1þ

sinkk� sinhkk

coskkþcoshkk
sin

kk

L
x1� sinh

kk

L
x1

� �
ð17Þ

where kk is the kth root of the transcendental characteristic
equation

1þ cos k cosh k ¼ 0

Substituting the series representation Eq. (16) into Eqs. (14) and
(15), the discrete Euler–Lagrange equations for the structurally
undamped Euler–Bernoulli beam model are obtained as

M€aðtÞ þ KaðtÞ � ðHp þHf ÞvðtÞ ¼ �f

Cf _vðtÞ þ vðtÞ
R
þ ðHp þHf ÞT _aðtÞ ¼ 0

ð18Þ
where
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are the components of M;K;Hp;Hf , and �f, respectively. The param-
eter Cf is given by

Cf ¼
BL
h

�0 þ
1
a

� �
Since the focus in energy harvesting is placed on the resonance

behavior (i.e. damping controlled region), it is necessary to account
for structural dissipation in the system. In this work, we resort to
Rayleigh damping which is proportional to the mass and the stiff-
ness matrices. We introduce the damping matrix D with

D ¼ lMþ cK

where l and c are constants of proportionality which can be calcu-
lated using two modal damping ratios, f1 and f2 through the follow-
ing equation (Clough and Penzien, 1993):

c
l

� �
¼ 2x1x2

x2
1 �x2

2

1
x2

� 1
x1

�x2 x1

" #
f1

f2

� �
where x1 and x2 are the first two nature frequencies of the beam.
In the absence of other damping mechanisms, the damping ratio is
related to the material quality factor (Q ¼ 1=2f).

With the consideration of Rayleigh damping, the Euler–
Lagrange equations (18) are written as

M€aðtÞ þ D _aðtÞ þ KaðtÞ � ðHp þHf ÞvðtÞ ¼ �f

Cf _vðtÞ þ vðtÞ
R
þ ðHp þHf ÞT _aðtÞ ¼ 0

ð19Þ

Note that the coupling vectors Hp and Hf are parameters corre-
sponding to the piezoelectricity and the flexoelectricity of the mate-
rial, respectively. They couple the mechanical and electrical
behaviors of the cantilever beam. The two Euler–Lagrange equa-
tions in (18) or (19) would be decoupled if both Hp and Hf are zero.
For a symmetric cross section beam with respect to the neutral axis
(x1-axis), Hp equals to zero since HP ¼ 0. Therefore the flexoelectric
term Hf is important as the major source of electromechanical cou-
pling in such centrosymmetric beams. However, the flexoelectric
effect is too slight to be detected at macroscale. In the next section
of this paper, we show that the significance of flexoelectricity
changes with the sample size which throw light on the energy har-
vesting for MEMS and NEMS applications.

If the base vibration is harmonic of the form, wbðtÞ ¼W0ejxt ,
then the force vector �f becomes

�f ¼ Fejxt ð20Þ

where

Fk ¼W0x2
Z L

0
qAPnkðx1Þdx1

Since the base vibration is harmonic and the system is assumed
to be linear, it is reasonable to assume that the steady-state
response of the system is also harmonic with the same frequency
x. Therefore the generalized coordinate aðtÞ and output voltage
vðtÞ can be expressed as the following harmonic forms
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aðtÞ ¼ Aejxt ; vðtÞ ¼ Vejxt

Using the above assumption, the solution is reduced to solving a
set of algebraic equations (19). They are given by

½�x2Mþ jxðlMþ cKÞ þ K�A�HV ¼ F ð21Þ

jxCf þ
1
R

� �
V þ jxHT A ¼ 0 ð22Þ

where H ¼ Hp þHf is the total coupling term and is equal to Hf for
a centrosymmetric beam (a beam that is symmetric with respect to
x1-x2 surface in Fig. 1).

Then the complex-valued unknowns A and V are obtained
through solving the above linear algebraic equations

V ¼ jx jxCf þ
1
R

� ��1

ð�HTÞ

�x2Mþ jxðlMþ cKÞ þ Kþ jx jxCf þ
1
R

� ��1

HHT

" #�1

F ð23Þ

A ¼ �x2Mþ jxðlMþ cKÞ þ K

 ��1ðFþHVÞ ð24Þ

which contain both the amplitude and phase information of the
voltage across the electrical load and flexoelectrically shunted
vibration response. Note that the A vector is the vector of general-
ized coordinates and it is the back substitution of Eq. (24) into Eq.
(16) that yields the physical vibration response wðx1; tÞ.

4. Case study and results

In this section, the electromechanical behavior of the proposed
flexoelectric energy harvester under harmonic base excitation is
simulated using the continuum framework and its assumed-modes
solution. We choose polyvinylidene difluoride (PVDF) as the model
material system which has the following properties:
a ¼ 1

ð�r�1Þ�0
¼ 1:38� 1010 Nm2=C2 where �r ¼ 9:2 is the relative per-

mittivity of PVDF (Chu and Salem, 2012) and
�0 ¼ 8:854� 10�12 C2=ðNm2Þ; f ¼ �al012 ¼ �179 Nm=C is calcu-

lated from the flexoelectric coefficient l012 ¼ 1:3� 10�10 C=m
(Chu and Salem, 2012); For PVDF, c ¼ 3:7 GPa is the Young’s mod-
ulus (Guney, 2005); It is known that

ffiffiffiffiffiffiffiffi
g=c

p
is of the same order of

the radius of gyration of PVDF, so we chose g ¼ 5� 10�7 N for the
current work; q ¼ 1:78� 103 kg=m3 is the density of PVDF;
d ¼ �1:02� 109 N=C is obtained from the piezoelectric coefficient
d31 ¼ 20 pm=V (Murayama et al., 1976) by d ¼ �cad31; The damp-
ing ratios are given by f1 ¼ f2 ¼ 0:05 (Li and Laviage, 2013). The
length/width/thickness aspect ratio of the beam is fixed to
100 : 10 : 1 for all the sample sizes considered. It is worthwhile
to mention that, since the beam section is uniform in the axial
direction, the trial function given by Eq. (17) is the eigenfunction,
and therefore convergence is not an issue in the series discretiza-
tion even for very small number of modes N. We use N ¼ 5 for
all the following simulations. Furthermore, since the sample is
made of a single layer with doubly symmetric cross-section, it is
entirely centrosymmetric. Although PVDF exhibits both piezoelec-
tric and flexoelectric effects, only flexoelectricity is expected to be
pronounced in the simulations.

As is known, flexoelectricity only becomes significant at submi-
cron or nanometer scale. So in this work, we set the size of the
model to several microns or even smaller. For comparison, two dif-
ferent values for the beam thickness, 3 lm and 0:3 lm, are chosen
in the following simulations while keeping the aforementioned
length-to-width-to-thickness aspect ratio. All the simulation
results are given in forms of frequency response functions (FRFs)
in magnitude form by taking the base acceleration to be the known
kinematic input. In other words, we normalized the results by the
base acceleration, €wb ¼ �x2W0ejxt , which is quantified in terms of
the gravitational acceleration (G ¼ 9:81 m=s2, not to confuse with
the strain gradient coefficient g). We also chose a range of different
load resistance values for the simulations to demonstrate the per-
formance of the system under different loadings and identify the
optimal electrical load of the maximum power output.

4.1. Voltage FRFs

Fig. 3 shows the voltage output FRFs of a beam with a thickness
of 3 lm and the above mentioned aspect ratio (yielding the dimen-
sions of 300 lm� 30 lm� 3 lm). As an expected monotonic
trend in energy harvesting, with the increasing load resistance R
from 100X through 1GX, the voltage output also increases. The
lowest and highest curves are close to the short-circuit (R! 0)
and open-circuit (R!1) conditions, respectively. It is also
observed that the fundamental resonance frequency is insensitive
to the load resistance, it maintains a constant value, 7665 Hz, for
all the cases. The insensitive behavior of resonance frequency to
changing load resistance (from short- to open-circuit conditions)
is an indication of very low electromechanical coupling. Note also
that the resonance frequency reported here is about 10 times
higher than our previous work dealing with piezoelectric energy
harvesting at meso-scale even if we are dealing with a softer mate-
rial. This is an expected result since the resonance frequency
increases with decreased specimen size and the specimen we use
in the current work is about 100 times smaller than our previous
work using meso-scale piezoelectric cantilevers (Erturk, 2012).

If we further shrink the specimen size by 10 times (to have
0:3 lm thickness) to have the dimensions of
30 lm� 3 lm� 0:3 lm and perform the same analysis, the funda-
mental resonance frequency grows by an order of magnitude as
shown in Fig. 4. It is very important to note that, unlike the 3 lm
thickness case, the resonance frequency monotonically shifts from
74230 Hz to 75820 Hz with increased load resistance. The amount
of change in the resonance frequency as the electrode boundary
condition is altered from short- to open-circuit conditions is a mea-
sure of electromechanical coupling. This shift was reported previ-
ously for piezoelectric energy harvesting using strongly coupled
harvesters (DuToit and Wardle, 2007; Erturk and Inman, 2009,
2011). Therefore, comparing Figs. 3 and 4 in terms of the resonance
frequency shift reveals substantial improvement in the electrome-
chanical coupling as the sample thickness is reduced from 3 lm to
0:3 lm. Furthermore, since the cantilever is centrosymmetric, the
electromechanical coupling is due to flexoelectricity only, and it
grows significantly with reduced device thickness. Note that, for
a non-centrosymmetric sample that exhibits piezoelectricity,
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flexoelectric coupling can be comparable to piezoelectric coupling
at much smaller thickness levels.
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Fig. 5. Tip velocity FRFs of the centrosymmetric cantilever with 3 lm thickness.
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4.2. Tip velocity FRFs

It is more clear to observe the size effect of the proposed flexo-
electric energy harvester through the tip velocity FRFs with chang-
ing load resistance. As we can see in Fig. 5, there is almost no
difference between the curves of various load resistance values
for the 3 lm-thick beam case. Therefore, for this thickness level,
the flexoelectric coupling is indeed negligible. As a consequence,
the effect of vibration attenuation due to the energy dissipation
in the resistor (i.e. energy delivered to the load) is negligible for
all values of load resistance. It is worth mentioning that the effec-
tive bending stiffness incorporating flexoelectric terms is

ðEIÞ� ¼ ðc � d2

a ÞIP � 2df
a HP � ðf

2

a � gÞAP , where the relative importance
of the terms change with varying sample scale, and HP is zero for
the centrosymmetric sample explored here. For the case of
0:3 lm thickness, as shown in Fig. 6, significant resonance fre-
quency shift (from 74230 Hz to 75820 Hz) is observed, in agree-
ment with the voltage FRFs of this thickness level (Fig. 4). We
should emphasize again that the enhancement of the electrome-
chanical coupling with changing thickness level is not the case in
piezoelectric transduction. It should be noted that the tip velocity
of the harvester is strongly attenuated for certain resistance values,
which is due to the shunt damping effect of the resistor i.e. dissipa-
tion due to Joule heating. This phenomenon corresponds well with
the piezoelectric energy harvesting case in the presence of suffi-
cient electromechanical coupling.
x 104Frequency [Hz]

Fig. 6. Tip velocity FRFs of the centrosymmetric cantilever with 0.3 lm thickness.
4.3. Power density FRFs

Regarding the size effect observed here, a question is how
would we exploit it. One popular measure of the performance of
an energy harvester is its power density, i.e. power output per
device volume for a given excitation level. The output power here

is obtained based on the output voltage by pðtÞ ¼ jvðtÞj
2

R . Therefore
the power FRFs should be normalized by the square of base accel-
eration for consistence. The power density FRF is the volumetric
density of the power FRF. Figs. 7 and 8 show the power density
for the 3 lm and 0:3 lm beams, respectively. As in the case of pie-
zoelectric energy harvesting, the power output does not exhibit
monotonic behavior with increasing (or decreasing) the load resis-
tance, revealing the existence of an optimal resistive load at each
frequency. Both of the two figures shows maximum output power
at R ¼ 100 MX among the set of resistor considered here, for
response around the respective resonance frequencies. Again, we
see the resonance frequency shift (from 74230 Hz to 75820 Hz)
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Fig. 4. Voltage FRFs of the centrosymmetric cantilever with 0.3 lm thickness.
in 0:3 lm-thickness beam case as the electrical load is changed
from short-to open-circuit conditions. The resonance frequency
of the maximum power output lies in between these two extremes
for a finite non-zero load. The highest curve corresponding to
R ¼ 100 MX shows the resonance frequency of 75180 Hz. It is
important to note that there is an increase in the output power
density with decreased specimen size. Comparing Figs. 7 and 8, it
is found that the maximum output power density for 0.3 lm beam
is around 7 times that of the 3 lm beam. Substantial increase in
the power density is observed for higher vibration modes as well
(not reported here).
4.4. Scaling of the conversion efficiency

To further demonstrate the effect of scaling, we explore the
energy conversion efficiency of the flexoelectric energy harvester.
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The conversion efficiency is simply the ratio of the electrical power
output to the mechanical power input, i.e. the power due to the
shear force exerted on the beam by the base. As mentioned previ-

ously, the peak electrical power output is jvðtÞj2
R . The shear force

exerted on the beam by the base is the shear force at x1 ¼ 0, which

can be easily expressed by cIP
d3wð0Þ

dx3
1

. Therefore the power due to the

shear force is the product of the shear force and the base velocity
dwbðtÞ

dt . The mechanical-to-electrical energy conversion efficiency is
then

g ¼ jvðtÞj2=R

jcIPd3wð0Þ=dx3
1j � jdwbðtÞ=dtj

ð25Þ

We maintain the shape of the sample (in terms of the aspect
ratio, 100:10:1) and vary the thickness of the beam from 3 lm
through 0:3 lm. As shown in Fig. 9, for the 10 different sizes con-
sidered in this thickness range, the energy conversion efficiency
monotonously increases as the decrease of the sample size. Specif-
ically, the magnitude of the highest curve is about two orders
higher than that of the lowest one. Further enhancement in the
conversion efficiency can be expected as the beam thickness is
reduced to nanometer scale.
5. Conclusions

In this paper, a flexoelectric Euler–Bernoulli model for energy
harvesting is proposed following a continuum mathematical
framework accounting for the two-way flexoelectric coupling. Lin-
ear constitutive law is used for describing the elastic, dielectric,
and flexoelectric behavior of the material. Based on the variational
principle for flexoelectricity, the Euler–Lagrange equations are
derived. A generalized assumed-modes method is employed for
the solution of the governing equations and frequency–response
simulations of technologically relevant case studies. In contrast
to piezoelectricity, a single centrosymmetric beam may be used
for generating electricity through flexoelectricity. In this work, it
is shown that the easily fabricated, simple symmetric thin beam
serves as a good candidate for the flexoelectric energy harvester
at sub-micron scales. Since flexoelectricity, unlike piezoelectricity,
is universally present in all dielectrics, including amorphous mate-
rials, the current work may be useful for exploring energy harvest-
ing in a wide variety of materials including soft biomaterials.
Finally, we have shown a substantial size effect in flexoelectric
energy harvesting. A two orders of magnitude increase in the
mechanical-to-electrical energy conversion efficiency is shown
due to the reduction of the sample’s thickness from 3 lm to
0:3 lm. Due to the this size effect, the proposed flexoelectric
energy harvester is likely to be more attractive for micro and nano-
scale devices.
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