14 research outputs found

    Çift yönlü hareket edebilen elektrotermal mikroaktüatörün tasarımı, analizi ve üretimi

    No full text
    Bu çalışmada, çift yönlü hareket edebilen elektrotermal mikroaktüatörün tasarım ve analizi yapılarak 3B yazıcı yöntemlerinden olan iki foton polimerizasyon (2PP) ile fabrikasyonu amaçlanmıştır. Geleneksel Mikro Elektro Mekanik Sistem (MEMS) yöntemleriyle üretilmesi mümkün olan aktüatörün 3B yazıcı ile üretilmesi bu çalışmada gerçekleştirilmiştir. Geleneksel MEMS yöntemlerinin yüksek maliyetli olması, zor ve fazla işlem gerektirmesi nedeniyle yeni üretim yöntemleri için birçok çalışma yapılmıştır. Bu üretim yöntemlerinden en çok kullanılan ve geliştirileni ise 2PP yöntemidir. Bu yöntem ile nano seviyesine kadar doğrudan üretim mümkün olmaktadır. Ayrıca geleneksel yöntemlerde kullanılan birçok kimyasal işlem 2PP temelli 3B yazıcılar sayesinde uygulanmayacaktır.Aktüatörün fabrikasyon işlemleri yapılmadan önce analitik ve nümerik analizleri yapılmıştır. Aktüatör sistemlerinin literatürdeki analitik modellemeleri geleneksel MEMS fabrikasyonları için yapılmıştır. Bu çalışmada, analitik modellemeler yani matematiksel denklemler 2PP tekniği için yeniden elde edilmiştir. Aktüatörün nümerik yani sonlu elemanlar analizleri ise MEMS için üretilen paket program ile yapılmıştır. Aktüatör sisteminin tasarım ve analiz işlemleri tamamlandıktan sonra sistemin fabrikasyonu yapılmıştır. Fabrikasyon işlemlerinin başarılı olması için tasarıma destekler eklenmiştir. Bu desteklerin sayısı ve ölçülerine göre birçok fabrikasyon deneyi yapılmıştır. Aktüatörün karakterizasyon işlemleri için görüntü işleme tekniği geliştirilmiştir. Normalde aktüatörün hareketinin ölçülmesi, probe istasyonlarına bağlı modüller olan sensör ve kamera sistemleriyle yani donanımsal işlemler ile yapılmaktadır. Ancak bu çalışmada aktüatöre verilen her bir gerilim değerleri fotoğraflanarak aktüatörün sıfır pozisyonuna göre yer değiştirmesi görüntü işleme tekniğiyle elde edilmiştir. Ayrıca geliştiren bu teknikle ekstra donanımsal maliyetler azaltmaktadır. Bu tez çalışması, tasarımın özgünlüğü, matematiksel modellemesi, fabrikasyon için kullanılan yöntem ve karakterizasyon işlemlerinde tercih edilen teknik bakımından literatüre katkı sağlayacağı düşünülmektedir.Karakterizasyon sonuçlarına göre aktüatöre 5V ile 7V arası gerilim uygulanması halinde her bir yöne maksimum 2.82µm hareket etmiştir. Ayrıca aktüatöre 7V’dan fazla gerilim verilmesi halinde ise kollarda kırılma ve bozulmalar oluşmuştur. Sonuç olarak, aktüatör tasarımı simetrik yapıda olduğu için aktüatörün maksimum hareketi 5.64µm’dir.--------------------This study aims to design and analyze a bi-directionally movable electrothermal micro-actuator that has been fabricated using Two-Photon Polymerization (2PP), which is one of the 3D printing methods. The fabrication of actuator, which is also possible and realized in many different designs using conventional Micro-Electro-Mechanical Systems (MEMS), is carried out using a 3D printer. Because of the high cost, difficult and excessive processing of traditional MEMS methods, many studies have been carried out in search of new fabrication methods. Among those fabrication methods, 2PP is the most widely used and developed method for fabrication. Using this method, it is possible to fabricate outright up to nanoscale. Also, many chemical processes used in conventional methods are not used by 2PP based 3D printers.Analytical and finite element analysis were performed before the fabrication of the actuator. A MATLAB program was used for analytical modeling. Analytical modeling of the actuator systems in the literature has been performed for the traditional MEMS fabrications. In this study, analytical models and mathematical equations were derived for the 2PP technique. The finite element analysis of the actuator is done by the MEMS toolbox present in the COMSOL program. The CAD design was done with both the Solid Edge program and the COMSOL program. The fabrication of the actuator system has been performed once the designing and analysis of the actuator system were completed. Supports for design has been added for successful fabrication operations. Several fabrication tests were performed for the number and dimensions of these supports. Image processing technique has been developed for the characterization of the actuator. Normally, the movement of the actuator is measured by sensor and camera systems which are modules connected to the probe stations. However, in this study, each voltage value given to the actuator was photographed and the displacement of the actuator according to zero position was obtained by the developed image processing technique. Image processing technique was developed using the MATLAB program. The hardware costs were also reduced because of this technique.According to the characterization results, the actuator moved a maximum of 2.82 µm in each direction when 5V to 7V of voltage was applied to it. Also, when more than 7V of voltage is applied to the actuator, breakage, and distortion in the arms has been observed

    Characterization of a micro beam fabricated with 3D technology using image processing algorithm

    No full text
    ERTUGRUL, ISHAK/0000-0001-9586-0377WOS:000612155000017Background: This article presents a micro beam, fabricated using digital light processing (DLP), one of the additive manufacturing methods. The fabrication process is based on the projection micro stereolithography method. Objective: The micro beam, which can move in one direction (y-axis), was designed according to the specified criteria and fabricated. In the experiments carried out during the fabrication process, it showed the effect of the support structures on the fabrication of the micro beam. Methods: For the characterization process, the micro beam connected to the probe station is connected to a circuit board with cables attached to the electrical pads. The image processing algorithm has been developed to detect the displacement of the micro beam as a result of the characterization processes. The operating voltage was increased from 0V to 2V and incremented until fracture and deterioration in the structure of the micro beam were observed. Results: The micro beam was able to withstand distortion and breaks up to a maximum voltage of 10V. When 12V voltage was applied to the micro beam, fractures occurred in the arm. As a result of the characterization process, the maximum displacement of the micro beam was measured as 2.32 mu m at 10V voltage. YY Conclusion: The characterization results indicated the usability of the image processing algorithm in 3D technology

    Displacement analysis of the mems device

    No full text
    In this study, the displacement analysis of the microelectromechanical system (MEMS) device was performed. The current passing through the microdevice radiates heat energy as it pushes the device to the desired distance through thermal expansion. The amount of expansion varies depending on the current flowing through the device. With the designed model, the amount of current required for the displacement of the MEMS device is determined. In addition, the displacements produced in the microdevice for different metallic materials (silver and gold) and input potentials (0.4 V, 0.8 V, and 1.2 V) were calculated. These types of materials are frequently preferred in MEMS technology due to their high conductivity. Increasing the voltage value as a result of the analysis studies increased the displacement of the materials. When 1.2V voltage is applied, the highest displacement values for silver and gold are; 6.45 mu m, 4.32 mu m, respectively. According to the results, the silver material showed a significant displacement compared to gold material

    Bir ters sarkaç sisteminde kullanılan genel kontrol algoritmalarının karşılaştırılması

    No full text
    BİR TERS SARKAÇ SİSTEMİNDE KULLANILAN GENEL KONTROL ALGORİTMALARININ KARŞILAŞTIRILMASI Bu çalışmada, kontrol teoremlerinin önemli problemlerinden biri olan doğrusal olmayan ters sarkaç sisteminin mekanik ve elektronik tasarımları gerçekleştirilerek endüstride yaygın kullanılan PLC ile kontrolü amaçlanmıştır. Yatay eksen üzerinde hareket edebilen ve enkodere bağlı aşağı yöndeki sarkacın uygun algoritmalar kullanılarak dik konuma getirilmesi ve dik konumdaki sarkacın denge pozisyonunda kalması bu çalışmada gerçekleştirilmiştir. Ters sarkaç sistemi, Siemens S7-1200 PLC ve CPU’ya bağlı analog çıkış modülü kullanılarak hız modunda kontrol edilmiştir. Konum kontrollü stratejik araba hareketleri ile sarkacın yukarı pozisyona gelmesi sağlandıktan sonra PID kontrolör yöntemiyle açı ve pozisyon kontrolü yapılarak ters sarkaç sisteminin optimum sürede istenilen pozisyonda dengelenmesi sağlanmıştır. Dengelenen sarkaca, dışarıdan harici kuvvet uygulanarak sistemin bozucu etkilere karşı olan davranışı deneysel çalışmalarda test edilmiştir. Ters sarkaç sistemi, deneysel çalışmalarda görüleceği üzere gürbüz olarak çalışmaktadır. ABSTRACT BİR TERS SARKAÇ SİSTEMİNDE KULLANILAN GENEL KONTROL ALGORİTMALARININ KARŞILAŞTIRILMASI One of the major problems of control theory is controlling the nonlinear inverted pendulum system. This study intended to perform mechanical and electronic design of the nonlinear inverted pendulum system and control with the PLC as commonly used in industrial applications. In this study, by using appropriate algorithms, it is provided that the downstream pendulum which is connected to the encoder and mobile on the horizontal axis is repositioned to an upright position and remain in balance in that position To maket his possible, inverted pendulum system is controlled with Siemens S7-1200 PLC and a CPU connected analog output module in the speed mode. İn this study, The pendulum has been repositioned by controlling the angle as in the method of strategic car move, In the other side by PID controller it is checked the position of the inverted pendulum and provide the balance in the desired position in optimum time .After the pendulum has balanced, the system behavior against to destructive effect has been tested in experimental studies by applying external force. Inverted pendulum system is working as robust as seen in experimental studies

    Design and Analysis of MEMS Based Micro Resonator

    No full text
    Mikro-Elektro-Mekanik (MEMS) rezonatörler uzun zamandır sensör tasarımı için kullanılmaktadır ve artık günümüzde güç elektroniği alanında osilatörler olarak giderek önem kazanmaktadır. Farklı metalik malzemeler kullanılarak COMSOL programı ile deformasyon analizi bu çalışmada gerçekleştirilmiştir. Bu çalışmada, bir mikro mekanik filtrenin parçası olarak tasarlanan bir yüzey mikro işlenmiş MEMS rezonatörü ayrıntılı olarak analiz edilmiştir. Geliştirilen model, uygulanan 100 V DC gerilim ile rezonatörün analizini gerçekleştirir. Mikro rezonatör içerisinden geçen akım, termal genleşme ile ısı enerjisini dağıtmaktadır. Bu genleşme, rezonatör içerisinden geçen akım ve yayılan sıcaklığa bağlı olarak değişmektedir. COMSOL yazılımı kullanılarak 400 ?m uzunluğunda ve 50 ?m kalınlığında dikdörtgen bir kiriş olarak tasarlanan rezonatör için polikristalin silikon, demir, alüminyum, gümüş ve altın malzeme ataması yapılarak gerekli analizler yapılmıştır. Giriş potansiyeli rezonatörün hava boşluğu merkezinden uygulanarak y ekseninde meydana gelen deformasyonlar ölçülmüştür. En yüksek deformasyon 0.062 µm ile alüminyum malzemede ortaya çıkarken; en düşük deformasyon 0.029 µm ile polikristalin silikon malzemede ölçülmüştür. Demir, gümüş ve altın malzemelerinde ise sırasıyla 0.030 µm, 0.052 µm ve 0.059 µm deformasyon verileri ölçülmüştür. Sonuç olarak, mikro rezonatör tasarımında kullanılan alüminyumun diğer metalik rezonatörler ile kıyaslandığı zaman önerilen geometri için önemli miktarda deformasyon verdiği gözlemlenmiştir.Micro-Electro-Mechanical (MEMS) resonators have long been used for sensor design and are now becoming increasingly important as oscillators in the field of power electronics. Deformation analysis with COMSOL program using different metallic materials was carried out in this study. In this study, a surface micromachined MEMS resonator designed as part of a micromechanical filter is analyzed in detail. The developed model performs the analysis of the resonator with the applied 100 V DC voltage. The current passing through the microresonator dissipates heat energy by thermal expansion. This expansion depends on the current flowing through the resonator and the radiated temperature. Using the COMSOL software, the resonator was designed as a rectangular beam with a length of 400 ?m and a thickness of 50 ?m. By applying the input potential from the centre of the air gap of the resonator, the deformations in the y-axis were measured. The highest deformation occurred in aluminium material with 0.062 µm; the lowest deformation was measured in polycrystalline silicon material with 0.029 µm. The deformation data of iron, silver and gold materials were measured as 0.030 µm, 0.052 µm and 0.059 µm, respectively. As a result, it is observed that aluminium used in microresonator design gives a significant amount of deformation for the proposed geometry when compared with other metallic resonators

    Investigation of the effect of micro beam length variation on deformation

    No full text
    Bu çalışmada birçok mikro-elektro-mekanik- sistemin (MEMS) temelini oluşturan mikro kirişin tasarımı ve deformasyon analizi gerçekleştirilmiştir. Mikro kiriş içerisinden geçen akım, termal genleşme ile ısı enerjisini dağıtmaktadır. Bu genleşme, kiriş içerisinden geçen akım ve yayılan sıcaklığa bağlı olarak değişmektedir. COMSOL yazılımı kullanılarak tasarlanan model için polikristalin silikon malzeme ataması gerçekleştirilerek gerekli analizler yapılmıştır. Bu malzeme, önemli fiziksel ve elektriksel özellikleri nedeniyle MEMS alanında çok sık kullanılan bir malzeme türüdür. Modellenen mikro kirişin iki ucundaki destek noktaları bir substrata sıkıca bağlanır. Bu destek noktalarından modele 10V giriş potansiyeli uygulanarak mikro kirişte ortaya çıkan deformasyon ve sıcaklık verileri incelenmiştir. Deneysel çalışmalarda polikristalin malzeme atanan mikro kirişin uzunluğu değiştirilerek ortaya çıkan deformasyonlar rapor edilmiştir. Dört farklı kiriş uzunluğu (50 µm, 100 µm, 150 µm ve 200 µm) girilerek oluşturulan modellerde ortaya çıkan deformasyon verileri arasında ciddi bir artış gözlemlenirken; sıcaklık değerleri birbirine yakın çıkmıştır. Polikristalin silikon malzeme için en yüksek deformasyon 200 µm uzunluğundaki mikro kirişte 2.01 µm iken; en düşük deformasyon 50 µm uzunluğunda 0.6 µm olarak ölçülmüştür. 100 µm ve 150 µm mikro kiriş uzunlukları için deformasyon değerleri ise sırasıyla 0.93 µm ve 1.41 µm olarak ölçülmüştür. Sıcaklık verileri ise en düşük 4890 K iken; en yüksek 4940 K olarak ölçülmüştür. Sonuç olarak, mikro kiriş tasarımında kiriş uzunluğu değişiminin deformasyon özelliklerini ciddi bir biçimde etkilediği gözlemlenmiştir.In this study, the design and deformation analysis of the micro beam, which forms the basis of many micro-electro-mechanical-systems (MEMS), was carried out. The current passing through the micro beam distributes the heat energy by thermal expansion. This expansion varies depending on the current passing through the beam and the radiating temperature. For the model designed using COMSOL software, polycrystalline silicon material was assigned and necessary analyzes were performed. This material is a type of material that is frequently used in the field of MEMS due to its important physical and electrical properties. The support points on both ends of the modeled microbeam are firmly connected to a substrate. By applying 10V input potential to the model from these support points, deformation and temperature data emerging in the micro beam were examined. In experimental studies, deformations that occur by changing the length of the micro-beam assigned polycrystalline material have been reported. While a significant increase is observed between the deformation data that occurs in the models created by entering four different beam lengths (50 µm, 100 µm, 150 µm and 200 µm); temperature values are close to each other. The highest deformation for the polycrystalline silicon material was 2.01 µm in the 200 µm long micro beam; the lowest deformation was measured as 50 µm and 0.6 µm in length. Deformation values for micro beam lengths of 100 µm and 150 µm were measured as 0.93 µm and 1.41 µm, respectively. Temperature data was the lowest at 4890 K; measured as the highest 4940K. As a result, it has been observed that the change of beam length seriously affects the deformation properties of the micro beam design

    Design and finite element analysis of MEMS based electrothermal micro-actuator

    No full text
    Bu makale, COMSOL yazılımı ile tasarlanan mikro elektromekanik sistem (MEMS) tabanlı elektrotermal mikro-aktüatörün sonlu elemanlar analizi çalışmasını sunmaktadır. Elektrotermal aktüatörler, elektrostatik aktüatörlere kıyasla daha büyük yer değiştirmeler sağlamaktadır. Termal aktüatörler iki tiptir. Bimorf termal aktüatör ve tek malzemeden yapılmış elektrotermal uyumlu (ETU) aktüatör. Bimorf aktüatörler, iki veya daha fazla farklı malzemeden yapılmış kompozit yapıdır. Bu çalışmada ETU tipi termal aktüatör kullanılmıştır. İki yönde hareket edebilen mikro-aktüatör, belirlenen kriterlere göre tasarlanmış ve analizler gerçekleştirilmiştir. Sonlu elemanlar analizi için mikro-aktüatöre iletken özelliği olan polycrystalline silicon malzeme ataması yapılmıştır. Bu analiz mikro-aktüatörün fabrikasyonu ve karakterizasyonu işlemleri öncesinde büyük öneme sahiptir. Analiz sürecinde gerilim uygulanarak mikro-aktüatörün hareket etmesi sağlanmıştır. Çalışma gerilimi, 1V’luk artışlarla 0V’dan mikro-aktüatörün yapısında kırılmalar ve bozulmalar gözlemlenene kadar artırılmıştır. Mikro-aktüatör 5V gerilime kadar dayanabilmiştir. Bu gerilim değerinden sonra mikro-aktüatörün yapısında kırılmalar ve bozulmalar meydana gelmiştir. Analizler sonucunda maksimum yer değiştirme 5V gerilim uygulandığında 4.18 µm olarak ölçülmüştür. Sonuç olarak, elektrotermal mikro-aktüatör tasarımı çift yönlü olduğundan maksimum yer değiştirme 8.36 µm olarak tespit edilmiştir.This article presents the finite element analysis study of the micro-electromechanical system (MEMS) based electrothermal micro-actuator designed with COMSOL software. Electrothermal actuators provide larger displacements compared to electrostatic actuators. Thermal actuators are of two types. Bimorph thermal actuator and electrothermal compatible (ETU) actuator made of single material. Bimorph actuators are composite structures made of two or more different materials. In this study, ETU type thermal actuator was used. The micro-actuator, which can move in two directions, has been designed and analyzed according to the specified criteria. Polycrystalline silicon material is assigned to the micro-actuator for finite element analysis. which has a conductive feature. This analysis is of great importance before the fabrication and characterization processes of the micro-actuator. During the analysis process, the micro-actuator was moved by applying voltage. The operating voltage is increased from 0V in 1V increments until breaks and distortions are observed in the structure of the micro-actuator. The micro-actuator was able to withstand up to 5V voltage. After this voltage value, breaks and distortions occurred in the structure of the micro-actuator. As a result of the analyzes, the maximum displacement was measured as 4.18 µm when 5V voltage was applied. As the electrothermal microactuator design is bidirectional, the maximum displacement was determined to be 8.36 µm

    Design, Fabrication, and Experiments of a Soft Pneumatic Gripper with Closed-Loop Position Control

    No full text
    Soft pneumatic grippers (SPGs) contribute significantly to the development of soft robotic devices and help enable different and complex hardware designs for soft robots. Apart from the many advantages, the lack of position feedback of soft grippers presents a problem for position control. This study aims to examine this problem with the SPG, which is fabricated using additive manufacturing technology. The soft gripper is fabricated in two parts using the molding technique. The structure of the gripper consists of molded silicone (room -temperature-vulcanizing [room-temperature-vulcanizing]-3015) and polyethylene terephthalate (PET) film consisting of chambers. These sections are an active chamber consisting of 10 airtight sections that can be operated with compressed air and a passive chamber covered with PET film. During the bending of the SPG, the PET film inside the passive chamber begins to be compressed by the compressed air, resulting in a higher load-holding capacity of the gripper. In addition, the position of the feedback module made of flex sensor is integrated during fabrication. Various experiments were carried out to evaluate the performance of the SPG. Finite element analysis of the gripper was performed with COMSOL to compare the accuracy of realtime experiments. With the experimental studies' results, the SPG's motion characteristics, the relationship between the bending angle and the pressure, and the position-tracking performance were analyzed. Experimental results of the SPG were found to be in good agreement with the simulation results. The experimental results determined that the SPG showed successful trajectory tracking performance with the proportional-integral-derivative control algorithm. The root mean square value for the controller is calculated as 0.1245 degrees.Mus Alparslan University Technology Research and Project Coordination Unit [BAP-22-TBMYO-4902-04]; Unmanned Aerial Vehicles LaboratoryThis research was supported by the Mus Alparslan University Technology Research and Project Coordination Unit as a project numbered BAP-22-TBMYO-4902-04. This study was carried out in Mus Alparslan University, Vocational School of Technical Sciences, Unmanned Aerial Vehicles Laboratory. The authors of this article would like to thank lecturer Burak Erg?nes for his support

    Modelling and thermal analysis of micro beam using comsol multiphysics

    No full text
    2-s2.0-85101696135In this study, the design and analysis of the micro beam is carried out using COMSOL multiphysics. The current passing through the beam distributes the heat energy due to its resistance that pushes the entire micro beam to the desired distance through thermal expansion. This expansion varies depending on the amount of current passing through the beam and the emitted temperature. The purpose of the model created is to estimate the amount of current and temperature increase required to cause displacement in the proposed micro beam using analysis software. In addition, displacements and temperature data produced in micro beams for different metallic materials (Al, Cu, Ni, and Pt) and different input potentials (0.3 V, 0.6 V, and 0.9 V) are reported. These materials are used as functional materials in the field of micro-electro-mechanical-system because of their important physical and electrical properties. As a result of the simulation studies, increasing the voltage increased the displacement in the materials and the resulting temperature. While there is a serious difference between the displacement data of the materials, the temperatures are close to each other. When 0.9 V voltage is applied, the highest displacement values for Al, Cu, Ni, and Pt are; 7.88 ?m, 5.36 ?m, 3.62 ?m, and 2.72 ?m, respectively. As a result, it has been observed that aluminum used in micro beam design gives a significant amount of displacement for the proposed geometry when compared to other metallic beams. © 2021 Society of Thermal Engineers of Serbia Published by the Vin?a Institute of Nuclear Sciences, Belgrade, Serbia. This is an open access article distributed under the CC BY-NC-ND 4.0 terms and condition

    Fabrication and Experimental Study of Micro-gripper with Electrothermal Actuation by Stereolithography Method

    No full text
    The aim of the study is to get high displacement values with low actuation voltage from the micro-gripper fabricated by stereolithography (SLA) method. Micro-grippers are devices based on a micro-electro-mechanical system (MEMS) preferred for manipulation and assembly in micro-fabrication. This article presents the modeling, fabrication, and experimental studies of a U-type electrothermal MEMS micro-gripper. The fabrication of the gripper was made by SLA, which is one of the additive manufacturing methods. The arm tip displacement of the gripper has been characterized in real-time by optical microscopy. In electrical characterization studies, the electrical voltage was applied to the pads of the micro-gripper. This voltage value was increased starting from 0V with 1V increments until deterioration was observed in the gripper. The micro-gripper is shown to actuate to a maximum opening displacement of 28.35 mu m at an applied voltage of 5V. The models are employed to examine key factors of the micro-gripper's performance including temperature distribution, displacement, and stresses based on an elastic analysis of structures. Experimental results for the displacement of the micro-gripper's arm tips were found to be in good agreement with the simulation results
    corecore