131 research outputs found

    USP32 (ubiquitin specific peptidase 32)

    Get PDF
    Review on USP32 (ubiquitin specific peptidase 32), with data on DNA, on the protein encoded, and where the gene is implicated

    Connections between CHFR, the cell cycle and chemosensitivity Are they critical in cancer?

    Get PDF
    Commentary to: Alternative efficacy-predicting markers for paclitaxel instead of CHFR in non-small cell lung cancer Masafumi Takeshita, Takaomi Koga, Koichi Takayama, Tokujiro Yano, Yoshihiko Maehara, Yoichi Nakanishi and Katsuo Sueish

    HNRNPA1 (heterogeneous nuclear ribonucleoprotein A1)

    Get PDF
    Heterogeneous nuclear ribonucleoprotein (HNRNPA1) gene maps to chromosome 12, plus strand and has 13 exons and 12 introns. There are three reported transcripts due to the alternative splicing. HNRNPA1 is one of the most abundant and ubiquitously expressed nuclear proteins. HNRNPA1 is a member of RNA-binding protein family comprising of 20 members in humans (Dreyfuss, 1993; Pinol-Roma, Choi, Matunis, & Dreyfuss, 1988). HNRNPA1 has diverse roles in RNA splicing, telomere length maintenance, miRNA maturation and mRNA transport from nucleus to cytoplasm

    ALCAM (Activated Leukocyte Cell Adhesion Molecule)

    Get PDF
    ALCAM (Activated Leukocyte Cell Adhesion Molecule), also known as CD166 (cluster of differentiation 166), is a member of a subfamily of immunoglobulin receptors with five immunoglobulin-like domains (VVC2C2C2) in the extracellular domain

    CHFR (Checkpoint with fork-head associated and ring finger)

    Get PDF
    Growing evidence in mice, primary human tumors, and mammalian cell culture models indicate that CHFR may function as a potent tumor suppressor. CHFR functions as part of an early G2/M checkpoint, more specifically in antephase. Antephase refers to late G2 when chromosome condensation starts. This early mitotic checkpoint causes a delay in chromosome condensation in response to mitotic stresses. The human CHFR gene was originally identified during a search for novel cell cycle checkpoint proteins that have fork-head associated domains. Initial analysis indicated that the CHFR-associated G2/M checkpoint was inactivated in a subset of cancers as demonstrated by high mitotic indices (a high percentage of cells that have condensed chromosomes) in response to exposure to the microtubule poison, nocodazole, due to lack of CHFR expression or CHFR mutations in various cancers. Many other studies showed promoter hypermethylation leading to low/no expression of CHFR

    Identification of an mRNA isoform switch for HNRNPA1 in breast cancers.

    Get PDF
    Roles of HNRNPA1 are beginning to emerge in cancers; however, mechanisms causing deregulation of HNRNPA1 function remain elusive. Here, we describe an isoform switch between the 3′-UTR isoforms of HNRNPA1 in breast cancers. We show that the dominantly expressed isoform in mammary tissue has a short half-life. In breast cancers, this isoform is downregulated in favor of a stable isoform. The stable isoform is expressed more in breast cancers, and more HNRNPA1 protein is synthesized from this isoform. High HNRNPA1 protein levels correlate with poor survival in patients. In support of this, silencing of HNRNPA1 causes a reversal in neoplastic phenotypes, including proliferation, clonogenic potential, migration, and invasion. In addition, silencing of HNRNPA1 results in the downregulation of microRNAs that map to intragenic regions. Among these miRNAs, miR-21 is known for its transcriptional upregulation in breast and numerous other cancers. Altogether, the cancer-specifc isoform switch we describe here for HNRNPA1 emphasizes the need to study gene expression at the isoform level in cancers to identify novel cases of oncogene activation

    Could MicroRNAs be Useful Tools to Improve the Diagnosis and Treatment of Rare Gynecological Cancers? A Brief Overview

    Get PDF
    Gynecological cancers pose an important public health issue, with a high incidence among women of all ages. Gynecological cancers such as malignant germ-cell tumors, sex-cord-stromal tumors, uterine sarcomas and carcinosarcomas, gestational trophoblastic neoplasia, vulvar carcinoma and melanoma of the female genital tract, are defined as rare with an annual incidence of <6 per 100,000 women. Rare gynecological cancers (RGCs) are associated with poor prognosis, and given the low incidence of each entity, there is the risk of delayed diagnosis due to clinical inexperience and limited therapeutic options. There has been a growing interest in the field of microRNAs (miRNAs), a class of small non-coding RNAs of 22 nucleotides in length, because of their potential to regulate diverse biological processes. miRNAs usually induce mRNA degradation and translational repression by interacting with the 30 untranslated region (30-UTR) of target mRNAs, as well as other regions and gene promoters, as well as activating translation or regulating transcription under certain conditions. Recent research has revealed the enormous promise of miRNAs for improving the diagnosis, therapy and prognosis of all major gynecological cancers. However, to date, only a few studies have been performed on RGCs. In this review, we summarize the data currently available regarding RGCs.peer-reviewe
    corecore