17 research outputs found

    Low-dose TNF augments fracture healing in normal and osteoporotic bone by up-regulating the innate immune response

    Get PDF
    The mechanism by which trauma initiates healing remains unclear. Precise understanding of these events may define interventions for accelerating healing that could be translated to the clinical arena. We previously reported that addition of low-dose recombinant human TNF (rhTNF) at the fracture site augmented fracture repair in a murine tibial fracture model. Here, we show that local rhTNF treatment is only effective when administered within 24h of injury, when neutrophils are the major inflammatory cell infiltrate. Systemic administration of anti-TNF impaired fracture healing. Addition of rhTNF enhanced neutrophil recruitment and promoted recruitment of monocytes through CCL2 production. Conversely, depletion of neutrophils or inhibition of the chemokine receptor CCR2 resulted in significantly impaired fracture healing. Fragility, or osteoporotic, fractures represent a major medical problem as they are associated with permanent disability and premature death. Using a murine model of fragility fractures, we found that local rhTNF treatment improved fracture healing during the early phase of repair. If translated clinically, this promotion of fracture healing would reduce the morbidity and mortality associated with delayed patient mobilization

    Monocytes induce STAT3 activation in human mesenchymal stem cells to promote osteoblast formation

    Get PDF
    A major therapeutic challenge is how to replace bone once it is lost. Bone loss is a characteristic of chronic inflammatory and degenerative diseases such as rheumatoid arthritis and osteoporosis. Cells and cytokines of the immune system are known to regulate bone turnover by controlling the differentiation and activity of osteoclasts, the bone resorbing cells. However, less is known about the regulation of osteoblasts (OB), the bone forming cells. This study aimed to investigate whether immune cells also regulate OB differentiation. Using in vitro cell cultures of human bone marrow-derived mesenchymal stem cells (MSC), it was shown that monocytes/macrophages potently induced MSC differentiation into OBs. This was evident by increased alkaline phosphatase (ALP) after 7 days and the formation of mineralised bone nodules at 21 days. This monocyte-induced osteogenic effect was mediated by cell contact with MSCs leading to the production of soluble factor(s) by the monocytes. As a consequence of these interactions we observed a rapid activation of STAT3 in the MSCs. Gene profiling of STAT3 constitutively active (STAT3C) infected MSCs using Illumina whole human genome arrays showed that Runx2 and ALP were up-regulated whilst DKK1 was down-regulated in response to STAT3 signalling. STAT3C also led to the up-regulation of the oncostatin M (OSM) and LIF receptors. In the co-cultures, OSM that was produced by monocytes activated STAT3 in MSCs, and neutralising antibodies to OSM reduced ALP by 50%. These data indicate that OSM, in conjunction with other mediators, can drive MSC differentiation into OB. This study establishes a role for monocyte/macrophages as critical regulators of osteogenic differentiation via OSM production and the induction of STAT3 signalling in MSCs. Inducing the local activation of STAT3 in bone cells may be a valuable tool to increase bone formation in osteoporosis and arthritis, and in localised bone remodelling during fracture repair

    The effect of hypoxia and stem cell source on haemoglobin switching

    No full text
    This study investigated whether relative changes that accompany the naturally occurring shifts in haematopoietic sites during human development play a role in haemoglobin (Hb) switching or whether Hb switching is innately programmed into cells. CD34(+)/Lineage(-) haematopoietic stem/progenitor cells (HSCs) were isolated from human fetal liver (F-LVR), cord blood (CB), and adult bone marrow (ABM), and the Hb was characterized by flow cytometry on cultures that generated enucleated red cells. All feeder layers (stroma from F-LVR, ABM, and human fetal aorta) enhanced cell proliferation and erythropoiesis but did not affect Hb type. HSCs from CB and F-LVR generated the same Hb profile under normoxia and hypoxia. HSCs from ABM had single-positive HbA and double-positive HbA and HbF cells at normoxia and almost entirely double-positive cells at hypoxia. Further characterization of these ABM cultures was determined by following mRNA expression for the transcription factors erythroid Kruppel-like factor (EKLF) and fetal Kruppel-like factor (FKLF) as a function of time in cultures under hypoxia and normoxia. The erythroid-specific isoform of 5-amino-levulinate synthase (ALAS2) was also expressed under hypoxic conditions. We conclude that Hb switching is affected by the environment but not all HSCs are preprogrammed to respond

    In vivo generation of beta-cell-like cells from CD34(+) cells differentiated from human embryonic stem cells

    No full text
    OBJECTIVE: CD34(+) cells, present within the bone marrow, have previously been shown to possess pancreatic endocrine potential. Based on this observation, we explored the capacity of CD34(+) cells derived in culture from the differentiation of human embryonic stem cells (hESC), for their in vivo pancreatic endocrine capacity. MATERIALS AND METHODS: Sheep were transplanted with hESC-derived CD34(+) cells, as well as nonsorted differentiated cultures. Transplantations were carried out with in utero intraperitoneal injections prior to development of the immune system in the fetus so that tolerance toward foreign antigens was acquired during gestation and persisted in the adult. RESULTS: All cell populations that were tested demonstrated human cellular activity and long-term presence up to 5 years. However, the in vivo beta-cell-like activity achieved from the transplantation of the sorted CD34(+) cell population was not augmented by transplanting the entire cell population from which the CD34(+) cells were isolated. Human DNA and insulin messenger RNA were detected in sheep pancreases. An average of 1.51 ng/mL human C-peptide was detected in serum from eight animals transplanted with differentiated cell populations and assayed up to 55 months posttransplantation. Transplantation of as few as 23,500 cells resulted in long-term sustainable beta-cell-like activity. Teratomas were absent in the transplanted animals. CONCLUSION: Our data suggest that hESC-derived CD34(+) cells have a potential for long-term in vivo endocrine cellular activity that could prove useful in regenerative medicine. Because the same cell population has previously been shown to contain hematopoietic potential, it could be used for the induction of immunological tolerance and bone marrow chimerism prior to cellular therapy for diabetes

    Selected genes associated with OB differentiation and/or function.

    No full text
    <p>Differentially regulated transcripts in MSC STAT3C compared to MSC AdGFP associated with osteogenic differentiation and function.</p

    Genes down-regulated by STATC.

    No full text
    <p>The table lists the 50 most highly significantly down-regulated transcripts in MSC STAT3C compared to MSC AdGFP (with p<0.01 cutoff using one way ANOVA with Benjamini-Hochberg multiple testing correction). Values shown are the medians from the five donors.</p

    OSM mediates monocyte osteogenic effect through STAT3 signaling.

    No full text
    <p>The levels of pSTAT3 and STAT3 were assessed using WB in MSCs infected either with STAT3C (50 M.O.I.) or STAT3DN (100 M.O.I.) adenoviruses in osteogenic media. GFP adenoviral infection was used as a control (100 M.O.I.) (A). MSC ALP activity was measured 7 days after infection either with STAT3DN, STAT3C or AdGFP (B). MSC infected with the STAT3C or AdGFP viruses were also kept for 21 days in osteogenic media when bone nodule formation was assessed using Alizarin Red S staining (C). MSC infected with either the STAT3DN, STAT3C or AdGFP were kept with or without conditioned supernatant from separate monocyte:MSC co-cultures (10∢1 s/n) for 7 days when ALP activity was quantified (D). Blots are representative of three independent experiments performed. Graphs show means Β± SEM of three independent experiments performed in triplicate. Phase contrast pictures (10X) are representative of three independent experiments performed. *p≀0.05, ***p≀0.001.</p
    corecore