4 research outputs found

    Evolutionary genomics of socially polymorphic populations of Pogonomyrmex californicus

    No full text
    Errbii M, Ernst UR, Lajmi A, Privman E, Gadau J, Schrader L. Evolutionary genomics of socially polymorphic populations of Pogonomyrmex californicus. BMC Biology. 2024;22(1): 109.**Abstract** **Background** Social insects vary considerably in their social organization both between and within species. In the California harvester ant,Pogonomyrmex californicus(Buckley 1867), colonies are commonly founded and headed by a single queen (haplometrosis, primary monogyny). However, in some populations in California (USA), unrelated queens cooperate not only during founding (pleometrosis) but also throughout the life of the colony (primary polygyny). The genetic architecture and evolutionary dynamics of this complex social niche polymorphism (haplometrosis vs pleometrosis) have remained unknown. **Results** We provide a first analysis of its genomic basis and evolutionary history using population genomics comparing individuals from a haplometrotic population to those from a pleometrotic population. We discovered a recently evolved (chameau) and DNA methylation (Dnmt1). **Conclusions** Altogether, our results suggest that social morph in this species is a polygenic trait involving a potential young supergene. Further studies targeting haplo- and pleometrotic individuals from a single population are however required to conclusively resolve whether these genetic differences underlie the alternative social phenotypes or have emerged through genetic drift. </p

    Inhibition of HSP90 causes morphological variation in the invasive ant Cardiocondyla obscurior

    No full text
    Canalization underlies the expression of steady phenotypes in the face of unsteady environmental conditions or varying genetic backgrounds. The chaperone HSP90 has been identified as a key component of the molecular machinery regulating canalization and a growing body of research suggests that HSP90 could act as a general capacitator in evolution. However, empirical data about HSP90-dependent phenotypic variation and its evolutionary impact is still scarce, particularly for non-model species. Here we report how pharmacological suppression of HSP90 increases morphological variation up to 87% in the invasive ant Cardiocondyla obscurior. We show that workers treated with the HSP90 inhibitor 17-DMAG are significantly more diverse compared to untreated workers in two of four measured traits: maximal eye distance and maximal propodeal spine distance. We further find morphological differentiation between natural populations of C. obscurior in the same traits that responded to our pharmacological treatment. These findings add support for the putative impact of HSP90 on canalization, the modularity of phenotypic traits, and its potential role in morphological evolution of ants

    Transposable elements and introgression introduce genetic variation in the invasive ant Cardiocondyla obscurior

    Get PDF
    Introduced populations of invasive organisms have to cope with novel environmental challenges, while having reduced genetic variation caused by founder effects. The mechanisms associated with this genetic paradox of invasive species has received considerable attention, yet few studies have examined the genomic architecture of invasive species. Populations of the heart node ant Cardiocondyla obscurior belong to two distinct lineages, a New World lineage so far only found in Latin America and a more globally distributed Old World lineage. In the present study, we use population genomic approaches to compare populations of the two lineages with apparent divergent invasive potential. We find that the strong genetic differentiation of the two lineages began at least 40,000 generations ago and that activity of transposable elements (TEs) has contributed significantly to the divergence of both lineages, possibly linked to the very unusual genomic distribution of TEs in this species. Furthermore, we show that introgression from the Old World lineage is a dominant source of genetic diversity in the New World lineage, despite the lineages' strong genetic differentiation. Our study uncovers mechanisms underlying novel genetic variation in introduced populations of C. obscurior that could contribute to the species' adaptive potential
    corecore