17 research outputs found

    Data Service Outsourcing and Privacy Protection in Mobile Internet

    Get PDF
    Mobile Internet data have the characteristics of large scale, variety of patterns, and complex association. On the one hand, it needs efficient data processing model to provide support for data services, and on the other hand, it needs certain computing resources to provide data security services. Due to the limited resources of mobile terminals, it is impossible to complete large-scale data computation and storage. However, outsourcing to third parties may cause some risks in user privacy protection. This monography focuses on key technologies of data service outsourcing and privacy protection, including the existing methods of data analysis and processing, the fine-grained data access control through effective user privacy protection mechanism, and the data sharing in the mobile Internet

    Organic Petrological Characteristics of Graptolite and Its Contribution to Buried Organic Carbon of Longmaxi Formation Shales, Middle Yangtze Region

    No full text
    The shale gas exploration of the Longmaxi Formation in the Yangtze Region of China has made a significant breakthrough. As an important hydrocarbon generation organism, graptolite is widely distributed in the Longmaxi Formation shales, but its hydrocarbon potential is still unclear. Taking the Longmaxi Formation shales in the Middle Yangtze Region as an example, this paper discusses the organic petrological characteristics of graptolite and its contribution to buried organic carbon. The Longmaxi shales in the study area can be divided into organic-rich shales (TOC > 2.0%) and organic-bearing shales (TOC < 2.0%). The organic-rich shales have high quartz content and low clay mineral content, which is opposite in the organic-bearing shales. Organic maceral results show that graptolite is widely distributed in nearly all the samples, while solid bitumen is relatively developed in organic-rich shale. The equivalent vitrinite reflectance obtained from the conversion of graptolite reflectance ranges from 2.46% to 2.76%, indicating that the organic matter maturity of the Longmaxi Formation shale is overmature. Combining an optical microscope and a field emission scanning electron microscope, the proportion of graptolite area to organic matter area can be obtained, the average of which is 32.71%. Solid bitumen mainly contributes to buried organic carbon of the organic-rich shales in the Longmaxi Formation, while graptolites contribute little to organic carbon burial. However, solid bitumen in the organic-bearing shales is relatively undeveloped, and graptolite is an important hydrocarbon generation organism, which is the main contributor to buried organic carbon

    Intensification of water on the extraction of pyridine from n-hexane using ionic liquid

    No full text
    One novel extraction process for denitrification of fuel based on ionic liquid was developed. Influence of water on this process was systematically investigated. The mechanism of this process was illustrated by density functional theory (DFT) calculations. The optimized extraction parameters were obtained by a series of experiments, such as mass ratio of ionic liquid and the initial N content. Meanwhile, [Bmim]BF4 was recycled through rotary evaporation, and exhibited good recycling properties and extraction efficiency. Finally, a specific separation process and technology was proposed based on the experimental data.</p

    A novel synthetic method of porous and nanoflower-like Al2O3/MoS2 catalyst for reduction of SO2 to elemental sulfur

    No full text
    MoS2 nanoflowers are favored for their potential in the production of elemental sulfur due to abundant surface area and good catalytic performance for reducing SO2. A novel synthetic strategy of porous Al2O3 supported on the MoS2 with nanoflower structure was proposed. The effects of preparation concentration, calcination atmosphere, and Al2O3 contents on the growth of catalysts with nanoflower structure were systematically studied via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer-Emmett-Teller (BET). The surface area was increased to 295.502 m(2)/g and the amount of Lewis acid on the surface of the Al2O3/MoS2 catalyst was increased by adjusting the ratio of Al/Mo. The porous and nanoflower structures of Al2O3/MoS2 catalysts promoted the sulfur selectivity without inhibiting the catalytic performance of MoS2. The conversion of SO2 and the selectivity of sulfur were 100% and 92% after 100 h life evaluation

    A novel synthetic method of porous and nanoflower-like Al2O3/MoS2 catalyst for reduction of SO2 to elemental sulfur

    No full text
    MoS2 nanoflowers are favored for their potential in the production of elemental sulfur due to abundant surface area and good catalytic performance for reducing SO2. A novel synthetic strategy of porous Al2O3 supported on the MoS2 with nanoflower structure was proposed. The effects of preparation concentration, calcination atmosphere, and Al2O3 contents on the growth of catalysts with nanoflower structure were systematically studied via X-ray diffraction (XRD), scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM), Fourier transform infrared (FTIR) spectroscopy, and Brunauer-Emmett-Teller (BET). The surface area was increased to 295.502 m(2)/g and the amount of Lewis acid on the surface of the Al2O3/MoS2 catalyst was increased by adjusting the ratio of Al/Mo. The porous and nanoflower structures of Al2O3/MoS2 catalysts promoted the sulfur selectivity without inhibiting the catalytic performance of MoS2. The conversion of SO2 and the selectivity of sulfur were 100% and 92% after 100 h life evaluation

    Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol

    No full text
    A series of silver modified Cu/SiO2 catalysts were synthesized with ammonia-evaporation method and applied in vapor-phase hydrogenation of methyl acetate to ethanol.The influence of additive‘Ag’on the structural evolution of catalyst was systematically studied by several characterization techniques,such as N2 adsorption–desorption,N2O titration,PXRD,FTIR,in-situ FTIR,H2-TPR,H2-TPD,XPS and TEM.Results showed that incorporation of a small amount of Ag could enhance the structural stability,and the strong interaction between Cu and Ag species was conducive to increase the dispersion of copper species and create a suitable Cu+/(Cu0+Cu+)ratio,which was proposed to be responsible for the improved catalytic activity.The maximum conversion of MA(94.1%)and selectivity of ethanol(91.3%)over optimized Cu-0.5 Ag/SiO2 and 120 h on stream without deactivation under optimal conditions demonstrates its excellent stability

    Silver modified Cu/SiO2 catalyst for the hydrogenation of methyl acetate to ethanol

    No full text
    A series of silver modified Cu/SiO2 catalysts were synthesized with ammonia-evaporation method and applied in vapor-phase hydrogenation of methyl acetate to ethanol. The influence of additive 'Ag' on the structural evolution of catalyst was systematically studied by several characterization techniques, such as N-2 adsorption-desorption, N2O titration, PXRD, HER, in-situFTIR, H-2-TPR, H-2-TPD, XPS and TEM. Results showed that incorporation of a small amount of Ag could enhance the structural stability, and the strong interaction between Cu and Ag species was conducive to increase the dispersion of copper species and create a suitable Cu+/(Cu-0 + Cu+) ratio, which was proposed to be responsible for the improved catalytic activity. The maximum conversion of MA (94.1%) and selectivity of ethanol (91.3%) over optimized Cu-0.5Ag/SiO2 and 120 h on stream without deactivation under optimal conditions demonstrates its excellent stability. (C) 2020 The Chemical Industry and Engineering Society of China, and Chemical Industry Press Co., Ltd. All rights reserved

    Geminal Dimethyl Substitution Enabled Controlled Ring-Opening Polymerization and Selective Depolymerization of Penicillamine-Derived β-Thiolactones

    No full text
    To access infinitely recyclable plastics, one key is to design thermodynamically neutral systems based on dynamic bonds for easy manipulation of the polymerization and the reverse depolymerization under low energy cost. Here, we present the controlled ring-opening polymerization of various penicillamine-derived β-thiolactones and the highly specific depolymerization of the resultant polythioesters (PNR-PenTE) for complete monomer recycling. The gem-dimethyl group confers better ROP control by reducing the activity of the chain-end thiolate groups and stabilizing the thioester linkages in the polymer backbone. High molar mass and narrow dispersity PNR-PenTE are conveniently accessible at room temperature bearing well-defined end groups and tunable side chains. PNR-PenTE can be tailored with water solubility, and/or be easily fabricated into persistent films or fibers with interesting thermal and mechanical properties. Most importantly, PNR-PenTE can be recycled to pristine enantiopure β-thiolactones at >95% conversion in a well-controlled unzipping fashion within min to hours at room temperature. Overall, this work may streamline the rapid development of a wide range of polythioesters with immense application potential as self-immolative building blocks, high value biomaterials, and sacrificial domain for nanolithography

    Integration of SNP Disease Association, eQTL, and Enrichment Analyses to Identify Risk SNPs and Susceptibility Genes in Chronic Obstructive Pulmonary Disease

    No full text
    Chronic obstructive pulmonary disease (COPD) is a complex disease caused by the disturbance of genetic and environmental factors. Single-nucleotide polymorphisms (SNPs) play a vital role in the genetic dissection of complex diseases. In-depth analysis of SNP-related information could recognize disease-associated biomarkers and further uncover the genetic mechanism of complex diseases. Risk-related variants might act on the disease by affecting gene expression and gene function. Through integrating SNP disease association study and expression quantitative trait loci (eQTL) analysis, as well as functional enrichment of containing known causal genes, four risk SNPs and four corresponding susceptibility genes were identified utilizing next-generation sequencing (NGS) data of COPD. Of the four risk SNPs, one could be found in the SNPedia database that stored disease-related SNPs and has been linked to a disease in the literature. Four genes showed significant differences from the perspective of normal/disease or variant/nonvariant samples, as well as the high performance of sample classification. It is speculated that the four susceptibility genes could be used as biomarkers of COPD. Furthermore, three of our susceptibility genes have been confirmed in the literature to be associated with COPD. Among them, two genes had an impact on the significance of expression correlation of known causal genes they interact with, respectively. Overall, this research may present novel insights into the diagnosis and pathogenesis of COPD and susceptibility gene identification of other complex diseases
    corecore