7 research outputs found

    Comparative Electronic Structures of the Chiral Helimagnets Cr1/3NbS2 and Cr1/3TaS2

    Full text link
    Magnetic materials with noncollinear spin textures are promising for spintronic applications. To realize practical devices, control over the length and energy scales of such spin textures is imperative. The chiral helimagnets Cr1/3NbS2 and Cr1/3TaS2 exhibit analogous magnetic phase diagrams with different real-space periodicities and field dependence, positioning them as model systems for studying the relative strengths of the microscopic mechanisms giving rise to exotic spin textures. Here, we carry out a comparative study of the electronic structures of Cr1/3NbS2 and Cr1/3TaS2 using angle-resolved photoemission spectroscopy and density functional theory. We show that bands in Cr1/3TaS2 are more dispersive than their counterparts in Cr1/3NbS2 and connect this result to bonding and orbital overlap in these materials. We also unambiguously distinguish exchange splitting from surface termination effects by studying the dependence of their photoemission spectra on polarization, temperature, and beam size. We find strong evidence that hybridization between intercalant and host lattice electronic states mediates the magnetic exchange interactions in these materials, suggesting that band engineering is a route toward tuning their spin textures. Overall, these results underscore how the modular nature of intercalated transition metal dichalcogenides translates variation in composition and electronic structure to complex magnetism.Comment: 46 pages, 18 figures, 5 table

    Encoding multistate charge order and chirality in endotaxial heterostructures

    No full text
    Abstract High-density phase change memory (PCM) storage is proposed for materials with multiple intermediate resistance states, which have been observed in 1T-TaS2 due to charge density wave (CDW) phase transitions. However, the metastability responsible for this behavior makes the presence of multistate switching unpredictable in TaS2 devices. Here, we demonstrate the fabrication of nanothick verti-lateral H-TaS2/1T-TaS2 heterostructures in which the number of endotaxial metallic H-TaS2 monolayers dictates the number of resistance transitions in 1T-TaS2 lamellae near room temperature. Further, we also observe optically active heterochirality in the CDW superlattice structure, which is modulated in concert with the resistivity steps, and we show how strain engineering can be used to nucleate these polytype conversions. This work positions the principle of endotaxial heterostructures as a promising conceptual framework for reliable, non-volatile, and multi-level switching of structure, chirality, and resistance

    Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells

    No full text
    Turren-Cruz S-H, Saliba M, Mayer MT, et al. Enhanced charge carrier mobility and lifetime suppress hysteresis and improve efficiency in planar perovskite solar cells. Energy & Environmental Science. 2018;11(1):78-86.Perovskite solar cells (PSCs) are very promising lab-scale technologies to deliver inexpensive solar electricity. Low-temperature, planar PSCs are of particularly interest for large-scale deployment due to their inherent suitability for flexible substrates and potential for silicon/perovskite tandems. So far, planar PSCs have been prone to large current–voltage hysteresis and low stabilized power output due to a number of issues associated with this kind of device configuration. We find that the suppression of the yellow-phase impurity (∂-FAPbI3) present in formamidium-based perovskites, by RbI addition, contributes to low hysteresis, higher charge carrier mobility, long-lived carrier lifetimes and a champion stabilized power output of 20.3% using SnOx as the electron selective contact. We study the effects of these impurities on the transient behavior that defines hysteresis and its relation to ionic movement. In addition, we find that the formation of a RbPbI3 phase does not significantly affect the charge carrier lifetimes and consequently the performance of the devices. This brings new physical insights onto the role of different impurities in perovskite solar cells, which make these materials so remarkable

    The effect of structural dimensionality on carrier mobility in lead-halide perovskites

    No full text
    This journal is © The Royal Society of Chemistry. Methylammonium lead iodide (MAPI) is a prototypical photoabsorber in perovskite solar cells (PSCs), reaching efficiencies above 20%. However, its hygroscopic nature has prompted the quest for water-resistant alternatives. Recent studies have suggested that mixing MAPI with lower dimensional, bulky-A-site-cation perovskites helps mitigate this environmental instability. On the other hand, low dimensional perovskites suffer from poor device performance, which has been suggested to be due to limited out-of-plane charge carrier mobility resulting from structural dimensionality and large binding energy of the charge carriers. To understand the effects of dimensionality on performance, we systematically mixed MA-based 3D perovskites with larger A-site cations to produce dimethylammonium, iso-propylammonium, and t-butylammonium lead iodide perovskites. During the shift from MAPI to lower dimensional (LD) PSCs, the efficiency is significantly reduced by 2 orders of magnitude, with short-circuit current densities decreasing from above 20 mA cm-2 to less than 1 mA cm-2. In order to explain this decrease in performance, we studied the charge carrier mobilities of these materials using optical-pump/terahertz-probe, time-resolved microwave photoconductivity, and photoluminescence measurements. The results show that as we add more of the low dimensional perovskites, the mobility decreases, up to a factor of 20 when it reaches pure LD perovskites. In addition, the photoluminescence decay fitting is slightly slower for the mixed perovskites, suggesting some improvement in the recombination dynamics. These findings indicate that changes in structural dimensionality brought about by mixing A-site cations play an important role in determining the measured charge carrier mobility, and in the performance of perovskite solar cells.NSF (grant no. CBET-1605495)Institute for Soldier Nanotechnology (ISN) (grant no. W911NF-13-D-0001)NASA (grant no. NNX16AM70H
    corecore