155 research outputs found

    Flux creep in the quasi-1D superconducting carbide Sc3CoC4

    Get PDF
    The superconducting flux dynamic of the transition metal carbide Sc3CoC4 which exhibits a quasi-one-dimensional structure is studied. Besides zero-field-cooling (zfc), field-cooling (fc) and magnetization measurements, especially flux creep relaxation experiments are performed. The relaxation rates S = dM/dlnt are determined at selected temperatures below the transition temperature Tc in two magnetic fields of 50 Oe and 100 Oe just above Hc1. The resulting supercurrent dependence on the mean activation energy is analyzed according to the collective pinning theory which predicts U ∼ ((j/jc)-μ –1). The calculated μ-values differ in the high and low temperature region. The μ-values below about 2.5 K are ≈ 0.5 - 0.68 depending slightly on the applied magnetic field whereas at higher temperatures the μ-values are ≈ 0.22 - 0.34. These results might indicate a transition between different types of vortex pinning around 2.5 K changing from single vortex creep at higher temperatures to collective creep of vortex bundles at lower temperatures

    Orbital Freezing in FeCr2S4 Studied by Dielectric Spectroscopy

    Full text link
    Broadband dielectric spectroscopy has been performed on single-crystalline FeCr2S4 revealing a transition into a low-temperature orbital glass phase and on polycrystalline FeCr2S4 where long-range orbital order is established via a cooperative Jahn-Teller transition. The freezing of the orbital moments is revealed by a clear relaxational behavior of the dielectric permittivity, which allows a unique characterization of the orbital glass transition. The orbital relaxation dynamics continuously slows down over six decades in time, before at the lowest temperatures the glass transition becomes suppressed by quantum tunneling.Comment: 4 pages, 4 figure

    1D to 3D Dimensional Crossover in the Superconducting Transition of the Quasi-One-Dimensional Carbide Superconductor Sc3CoC4

    Full text link
    The transition metal carbide superconductor Sc3CoC4 may represent a new benchmark system of quasi-1D superconducting behavior. We investigate the superconducting transition of a high-quality single crystalline sample by electrical transport experiments. Our data show that the superconductor goes through a complex dimensional crossover below the onset Tc of 4.5 K. First, a quasi-1D fluctuating superconducting state with finite resistance forms in the CoC4 ribbons which are embedded in a Sc matrix in this material. At lower temperature, the transversal Josephson or proximity coupling of neighboring ribbons establishes a 3D bulk superconducting state. This dimensional crossover is very similar to Tl2Mo6Se6, which for a long time has been regarded as the most appropriate model system of a quasi-1D superconductor. Sc3CoC4 appears to be even more in the 1D limit than Tl2Mo6Se6

    Thermal and Vibrational Properties of Thermoelectric ZnSb - Exploring the Origin of Low Thermal Conductivity

    Full text link
    The intermetallic compound ZnSb is an interesting thermoelectric material, largely due to its low lattice thermal conductivity. The origin of the low thermal conductivity has so far been speculative. Using multi-temperature single crystal X-ray diffraction (9 - 400 K) and powder X-ray diffraction (300 - 725 K) measurements we characterized the volume expansion and the evolution of structural properties with temperature and identify an increasingly anharmonic behavior of the Zn atoms. From a combination of Raman spectroscopy and first principles calculations of phonons we consolidate the presence of low-energy optic modes with wavenumbers below 60 cm-1. Heat capacity measurements between 2 and 400 K can be well described by a Debye-Einstein model containing one Debye and two Einstein contributions with temperatures {\Theta}D = 195K, {\Theta}E1 = 78 K and {\Theta}E2 = 277 K as well as a significant contribution due to anharmonicity above 150 K. The presence of a multitude of weakly dispersed low-energy optical modes (which couple with the acoustic, heat carrying phonons) combined with anharmonic thermal behavior provides an effective mechanism for low lattice thermal conductivity. The peculiar vibrational properties of ZnSb are attributed to its chemical bonding properties which are characterized by multicenter bonded structural entities. We argue that the proposed mechanism to explain the low lattice thermal conductivity of ZnSb might also control the thermoelectric properties of electron poor semiconductors, such as Zn4Sb3, CdSb, Cd4Sb3, Cd13-xInyZn10, and Zn5Sb4In2-x.Comment: 25 pages, 10 figures, supporting information attache

    Low field extension for magnetometers (TinyBee) used for investigations on low-dimensional superconductors with Bc1 < 5G

    Full text link
    In this article a simple and easy to install low magnetic field extension of the SQUID magnetometer Quantum Design MPMS-7 is described. This has been accomplished by complementing the MPMS-7 magnet control system with a laboratory current supply for the low magnetic field region (B \leq 200G). This hard- and software upgrade provides a significant gain in the magnetic field accuracy up to an order of magnitude compared with the standard instrument's setup and is improving the resolution to better than 0.01G below 40G. The field control has been integrated into the Quantum Design MultiVu software for a transparent and user-friendly operation of this extension. The improvements achieved are especially useful, when low magnetic field strengths (B < 1G) are required at high precision. The specific advantages of this application are illustrated by sophisticated magnetic characterisation of lowdimensional superconductors like Sc3CoC4 and SnSe2{Co({\eta}-C5H5)2}x.Comment: 16 pages, 7 figure

    An organometallic chimie douce approach to new Re(x)W(1-x)O3 phases

    Get PDF
    Re(x)W(1-x)O3.H2O and Re(x)W(1-x)O3 phases are prepared by a new organometallic chimie douce concept employing the organometallic precursor methyltrioxorhenium.Comment: 3 pages, 6 figures, submitted to Chem. Com

    Field and preasure response of Yb compounds close to a quantum critical point

    No full text
    • …
    corecore