17,762 research outputs found

    Vibrational transfer functions for base excited systems

    Get PDF
    Computer program GD203 develops transfer functions to compute governing vibration environment for complex structures subjected to a base motion

    Chaos properties and localization in Lorentz lattice gases

    Full text link
    The thermodynamic formalism of Ruelle, Sinai, and Bowen, in which chaotic properties of dynamical systems are expressed in terms of a free energy-type function - called the topological pressure - is applied to a Lorentz Lattice Gas, as typical for diffusive systems with static disorder. In the limit of large system sizes, the mechanism and effects of localization on large clusters of scatterers in the calculation of the topological pressure are elucidated and supported by strong numerical evidence. Moreover it clarifies and illustrates a previous theoretical analysis [Appert et al. J. Stat. Phys. 87, chao-dyn/9607019] of this localization phenomenon.Comment: 32 pages, 19 Postscript figures, submitted to PR

    On detecting CP violation in a single neutrino oscillation channel at very long baselines

    Full text link
    We propose a way of detecting CP violation in a single neutrino oscillation channel at very long baselines (on the order of several thousands of kilometers), given precise knowledge of the smallest mass-squared difference. It is shown that CP violation can be characterized by a shift in L/EL/E of the peak oscillation in the νe\nu_e--νμ\nu_\mu appearance channel, both in vacuum and in matter. In fact, matter effects enhance the shift at a fixed energy. We consider the case in which sub-GeV neutrinos are measured with varying baseline and also the case of a fixed baseline. For the varied baseline, accurate knowledge of the absolute neutrino flux would not be necessary; however, neutrinos must be distinguishable from antineutrinos. For the fixed baseline, it is shown that CP violation can be distinguished if the mixing angle θ13\theta_{13} were known.Comment: 8 pages, 9 figures; minor typos correcte

    Velocity Tails for Inelastic Maxwell Models

    Full text link
    We study the velocity distribution function for inelastic Maxwell models, characterized by a Boltzmann equation with constant collision rate, independent of the energy of the colliding particles. By means of a nonlinear analysis of the Boltzmann equation, we find that the velocity distribution function decays algebraically for large velocities, with exponents that are analytically calculated.Comment: 4 pages, 2 figure

    New Green-Kubo formulas for transport coefficients in hard sphere-, Langevin fluids and the likes

    Get PDF
    We present generalized Green-Kubo expressions for thermal transport coefficients μ\mu in non-conservative fluid-type systems, of the generic form, μ\mu =μ= \mu_\infty +\int^\infty_0 dt V^{-1} \av{I_\epsilon \exp(t {\cal L}) I}_0 where exp(tL)\exp(t{\cal L}) is a pseudo-streaming operator. It consists of a sum of an instantaneous transport coefficient μ\mu_\infty, and a time integral over a time correlation function in a state of thermal equilibrium between a current II and its conjugate current IϵI_\epsilon. This formula with μ0\mu_\infty \neq 0 and IϵII_\epsilon \neq I covers vastly different systems, such as strongly repulsive elastic interactions in hard sphere fluids, weakly interacting Langevin fluids with dissipative and stochastic interactions satisfying detailed balance conditions, and "the likes", defined in the text. For conservative systems the results reduce to the standard formulas.Comment: 7 pages, no figures. Version 2: changes in the text and references adde

    MEXIT: Maximal un-coupling times for stochastic processes

    Get PDF
    Classical coupling constructions arrange for copies of the \emph{same} Markov process started at two \emph{different} initial states to become equal as soon as possible. In this paper, we consider an alternative coupling framework in which one seeks to arrange for two \emph{different} Markov (or other stochastic) processes to remain equal for as long as possible, when started in the \emph{same} state. We refer to this "un-coupling" or "maximal agreement" construction as \emph{MEXIT}, standing for "maximal exit". After highlighting the importance of un-coupling arguments in a few key statistical and probabilistic settings, we develop an explicit \MEXIT construction for stochastic processes in discrete time with countable state-space. This construction is generalized to random processes on general state-space running in continuous time, and then exemplified by discussion of \MEXIT for Brownian motions with two different constant drifts.Comment: 28 page

    Time resolved spectroscopy of dust and gas from extrasolar planetesimals orbiting WD 1145+017

    Full text link
    Multiple long and variable transits caused by dust from possibly disintegrating asteroids were detected in light curves of WD 1145+017. We present time-resolved spectroscopic observations of this target with QUCAM CCDs mounted in the Intermediate dispersion Spectrograph and Imaging System at the 4.2-m William Herschel Telescope in two different spectral arms: the blue arm covering 3800-4025 {\AA} and the red arm covering 7000-7430 {\AA}. When comparing individual transits in both arms, our observations show with 20 {\sigma} significance an evident colour difference between the in- and out-of-transit data of the order of 0.05-0.1 mag, where transits are deeper in the red arm. We also show with > 6 {\sigma} significance that spectral lines in the blue arm are shallower during transits than out-of-transit. For the circumstellar lines it also appears that during transits the reduction in absorption is larger on the red side of the spectral profiles. Our results confirm previous findings showing the u'-band excess and a decrease in line absorption during transits. Both can be explained by an opaque body blocking a fraction of the gas disc causing the absorption, implying that the absorbing gas is between the white dwarf and the transiting objects. Our results also demonstrate the capability of EMCCDs to perform high-quality time resolved spectroscopy of relatively faint targets.Comment: 9 pages, 5 figures. Accepted to MNRA

    Neutrino oscillations: measuring θ13\theta_{13} including its sign

    Full text link
    In neutrino phenomenology, terms in the oscillation probabilities linear in sinθ13\sin \theta_{13} lead naturally to the question ``How can one measure θ13\theta_{13} including its sign?'' Here we demonstrate analytically and with a simulation of neutrino data that Peμ{\mathcal P}_{e\mu} and {\mathcal {P}_{\mu\mu} at L/E=2π/Δ21L/E = 2\pi/\Delta_{21} exhibit significant linear dependence on θ13\theta_{13} in the limit of vacuum oscillations. Measurements at this particular value of L/EL/E can thus determine not only θ13\theta_{13} but also its sign, if CP violation is small.Comment: 5 pages, 5 figure

    A ground-based NUV secondary eclipse observation of KELT-9b

    Get PDF
    KELT-9b is a recently discovered exoplanet with a 1.49 d orbit around a B9.5/A0-type star. The unparalleled levels of UV irradiation it receives from its host star put KELT-9b in its own unique class of ultra-hot Jupiters, with an equilibrium temperature > 4000 K. The high quantities of dissociated hydrogen and atomic metals present in the dayside atmosphere of KELT-9b bear more resemblance to a K-type star than a gas giant. We present a single observation of KELT-9b during its secondary eclipse, taken with the Wide Field Camera on the Isaac Newton Telescope (INT). This observation was taken in the U-band, a window particularly sensitive to Rayleigh scattering. We do not detect a secondary eclipse signal, but our 3σ\sigma upper limit of 181 ppm on the depth allows us to constrain the dayside temperature of KELT-9b at pressures of ~30 mbar to 4995 K (3σ\sigma). Although we can place an observational constraint of Ag<A_g< 0.14, our models suggest that the actual value is considerably lower than this due to H^- opacity. This places KELT-9b squarely in the albedo regime populated by its cooler cousins, almost all of which reflect very small components of the light incident on their daysides. This work demonstrates the ability of ground-based 2m-class telescopes like the INT to perform secondary eclipse studies in the NUV, which have previously only been conducted from space-based facilities.Comment: Accepted in ApJL. 7 pages, 3 figure

    Efficient decoupling schemes with bounded controls based on Eulerian orthogonal arrays

    Get PDF
    The task of decoupling, i.e., removing unwanted interactions in a system Hamiltonian and/or couplings with an environment (decoherence), plays an important role in controlling quantum systems. There are many efficient decoupling schemes based on combinatorial concepts like orthogonal arrays, difference schemes and Hadamard matrices. So far these (combinatorial) decoupling schemes have relied on the ability to effect sequences of instantaneous, arbitrarily strong control Hamiltonians (bang-bang controls). To overcome the shortcomings of bang-bang control Viola and Knill proposed a method called Eulerian decoupling that allows the use of bounded-strength controls for decoupling. However, their method was not directly designed to take advantage of the composite structure of multipartite quantum systems. In this paper we define a combinatorial structure called an Eulerian orthogonal array. It merges the desirable properties of orthogonal arrays and Eulerian cycles in Cayley graphs (that are the basis of Eulerian decoupling). We show that this structure gives rise to decoupling schemes with bounded-strength control Hamiltonians that can be applied to composite quantum systems with few body Hamiltonians and special couplings with the environment. Furthermore, we show how to construct Eulerian orthogonal arrays having good parameters in order to obtain efficient decoupling schemes.Comment: 8 pages, revte
    corecore