17,698 research outputs found

    Parallel density matrix propagation in spin dynamics simulations

    Full text link
    Several methods for density matrix propagation in distributed computing environments, such as clusters and graphics processing units, are proposed and evaluated. It is demonstrated that the large communication overhead associated with each propagation step (two-sided multiplication of the density matrix by an exponential propagator and its conjugate) may be avoided and the simulation recast in a form that requires virtually no inter-thread communication. Good scaling is demonstrated on a 128-core (16 nodes, 8 cores each) cluster.Comment: Submitted for publicatio

    MEXIT: Maximal un-coupling times for stochastic processes

    Get PDF
    Classical coupling constructions arrange for copies of the \emph{same} Markov process started at two \emph{different} initial states to become equal as soon as possible. In this paper, we consider an alternative coupling framework in which one seeks to arrange for two \emph{different} Markov (or other stochastic) processes to remain equal for as long as possible, when started in the \emph{same} state. We refer to this "un-coupling" or "maximal agreement" construction as \emph{MEXIT}, standing for "maximal exit". After highlighting the importance of un-coupling arguments in a few key statistical and probabilistic settings, we develop an explicit \MEXIT construction for stochastic processes in discrete time with countable state-space. This construction is generalized to random processes on general state-space running in continuous time, and then exemplified by discussion of \MEXIT for Brownian motions with two different constant drifts.Comment: 28 page

    Integrability of generalized (matrix) Ernst equations in string theory

    Full text link
    The integrability structures of the matrix generalizations of the Ernst equation for Hermitian or complex symmetric dĂ—dd\times d-matrix Ernst potentials are elucidated. These equations arise in the string theory as the equations of motion for a truncated bosonic parts of the low-energy effective action respectively for a dilaton and dĂ—dd\times d - matrix of moduli fields or for a string gravity model with a scalar (dilaton) field, U(1) gauge vector field and an antisymmetric 3-form field, all depending on two space-time coordinates only. We construct the corresponding spectral problems based on the overdetermined 2dĂ—2d2d\times 2d-linear systems with a spectral parameter and the universal (i.e. solution independent) structures of the canonical Jordan forms of their matrix coefficients. The additionally imposed conditions of existence for each of these systems of two matrix integrals with appropriate symmetries provide a specific (coset) structures of the related matrix variables. An equivalence of these spectral problems to the original field equations is proved and some approach for construction of multiparametric families of their solutions is envisaged.Comment: 15 pages, no figures, LaTeX; based on the talk given at the Workshop ``Nonlinear Physics: Theory and Experiment. III'', 24 June - 3 July 2004, Gallipoli (Lecce), Italy. Minor typos, language and references corrections. To be published in the proceedings in Theor. Math. Phy

    The orbital motion, absolute mass, and high-altitude winds of exoplanet HD209458b

    Full text link
    For extrasolar planets discovered using the radial velocity method, the spectral characterization of the host star leads to a mass-estimate of the star and subsequently of the orbiting planet. In contrast, if also the orbital velocity of the planet would be known, the masses of both star and planet could be determined directly using Newton's law of gravity, just as in the case of stellar double-line eclipsing binaries. Here we report on the detection of the orbital velocity of extrasolar planet HD209458b. High dispersion ground-based spectroscopy during a transit of this planet reveals absorption lines from carbon monoxide produced in the planet atmosphere, which shift significantly in wavelength due to the change in the radial component of the planet orbital velocity. These observations result in a mass determination of the star and planet of 1.00+-0.22 Msun and 0.64+-0.09 Mjup respectively. A ~2 km/sec blueshift of the carbon monoxide signal with respect to the systemic velocity of the host star suggests the presence of a strong wind flowing from the irradiated dayside to the non-irradiated nightside of the planet within the 0.01-0.1 mbar atmospheric pressure range probed by these observations. The strength of the carbon monoxide signal suggests a CO mixing ratio of 1-3x10-3 in this planet's upper atmosphere.Comment: 11 Pages main article and 6 pages suppl. information: A final, edited version appears in the 24 May 2010 issue of Natur

    The Computational Complexity of the Lorentz Lattice Gas

    Full text link
    The Lorentz lattice gas is studied from the perspective of computational complexity theory. It is shown that using massive parallelism, particle trajectories can be simulated in a time that scales logarithmically in the length of the trajectory. This result characterizes the ``logical depth" of the Lorentz lattice gas and allows us to compare it to other models in statistical physics.Comment: 9 pages, LaTeX, to appear in J. Stat. Phy

    Determining parameters of the Neugebauer family of vacuum spacetimes in terms of data specified on the symmetry axis

    Get PDF
    We express the complex potential E and the metrical fields omega and gamma of all stationary axisymmetric vacuum spacetimes that result from the application of two successive quadruple-Neugebauer (or two double-Harrison) transformations to Minkowski space in terms of data specified on the symmetry axis, which are in turn easily expressed in terms of multipole moments. Moreover, we suggest how, in future papers, we shall apply our approach to do the same thing for those vacuum solutions that arise from the application of more than two successive transformations, and for those electrovac solutions that have axis data similar to that of the vacuum solutions of the Neugebauer family. (References revised following response from referee.)Comment: 18 pages (REVTEX

    Systematic reviews of complementary therapies - an annotated bibliography. Part 1: Acupuncture

    Get PDF
    Background Complementary therapies are widespread but controversial. We aim to provide a comprehensive collection and a summary of systematic reviews of clinical trials in three major complementary therapies (acupuncture, herbal medicine, homeopathy). This article is dealing with acupuncture. Potentially relevant reviews were searched through the register of the Cochrane Complementary Medicine Field, the Cochrane Library, Medline, and bibliographies of articles and books. To be included articles had to review prospective clinical trials of acupuncture; had to describe review methods explicitly; had to be published; and had to focus on treatment effects. Information on conditions, interventions, methods, results and conclusions was extracted using a pretested form and summarized descriptively. Results From a total of 48 potentially relevant reviews preselected in a screeening process 39 met the inclusion criteria. 22 were on various pain syndromes or rheumatic diseases. Other topics addressed by more than one review were addiction, nausea, asthma and tinnitus. Almost unanimously the reviews state that acupuncture trials include too few patients. Often included trials are heterogeneous regarding patients, interventions and outcome measures, are considered to have insufficient quality and contradictory results. Convincing evidence is available only for postoperative nausea, for which acupuncture appears to be of benefit, and smoking cessation, where acupuncture is no more effective than sham acupuncture. Conclusions A large number of systematic reviews on acupuncture exists. What is most obvious from these reviews is the need for (the funding of) well-designed, larger clinical trials
    • …
    corecore