666 research outputs found

    Photoinduced molecule formation of spatially separated atoms on helium nanodroplets

    Full text link
    Besides the use as cold matrix for spectroscopic studies, superfluid helium droplets have served as a cold environment for the synthesis of molecules and clusters. Since vibrational frequencies of molecules in helium droplets exhibit almost no shift compared to the free molecule values, one could assume the solvated particles move frictionless and undergo a reaction as soon as their paths cross. There have been a few unexplained observations that seemed to indicate cases of two species on one droplet not forming bonds but remaining isolated. In this work, we performed a systematic study of helium droplets doped with one rubidium and one strontium atom showing that besides a reaction to RbSr, there is a probability of finding separated Rb and Sr atoms on one droplet that only react after electronic excitation. Our results further indicate that ground-state Sr atoms can reside at the surface as well as inside the droplet

    Adhesion Properties of Hydrogen on Sb(111) Probed by Helium Atom Scattering

    Full text link
    We have carried out a series of helium atom scattering measurements in order to characterise the adsorption properties of hydrogen on antimony(111). Molecular hydrogen does not adsorb at temperatures above 110 K in contrast to pre-dissociated atomic hydrogen. Depending on the substrate temperature, two different adlayer phases of atomic hydrogen on Sb(111) occur. At low substrate temperatures (110 110~K), the deposited hydrogen layer does not show any ordering while we observe a perfectly ordered (1×1)(1\times 1) H/Sb(111) structure for deposition at room temperature. Furthermore, the amorphous hydrogen layer deposited at low temperature forms an ordered overlayer upon heating the crystal to room temperature. Hydrogen starts to desorb at Tm=430 T_m = 430~K which corresponds to a desorption energy of Edes=(1.33±0.06) E_{des}=(1.33\pm0.06)~eV. Using measurements of the helium reflectivity during hydrogen exposure at different surface temperatures, we conclude that the initial sticking coefficient of atomic hydrogen on Sb(111) decreases with increasing surface temperature. Furthermore, the scattering cross section for the diffuse scattering of helium from hydrogen on Sb(111) is determined as \Sigma = (12 \pm 1)~\mbox{\AA}^{2}.Comment: 7 pages, 5 figure

    Bayesian Analysis of Femtosecond Pump-Probe Photoelectron-Photoion Coincidence Spectra with Fluctuating Laser Intensities

    Full text link
    This paper employs Bayesian probability theory for analyzing data generated in femtosecond pump-probe photoelectron-photoion coincidence (PEPICO) experiments. These experiments allow investigating ultrafast dynamical processes in photoexcited molecules. Bayesian probability theory is consistently applied to data analysis problems occurring in these types of experiments such as background subtraction and false coincidences. We previously demonstrated that the Bayesian formalism has many advantages, amongst which are compensation of false coincidences, no overestimation of pump-only contributions, significantly increased signal-to-noise ratio, and applicability to any experimental situation and noise statistics. Most importantly, by accounting for false coincidences, our approach allows running experiments at higher ionization rates, resulting in an appreciable reduction of data acquisition times. In addition to our previous paper, we include fluctuating laser intensities, of which the straightforward implementation highlights yet another advantage of the Bayesian formalism. Our method is thoroughly scrutinized by challenging mock data, where we find a minor impact of laser fluctuations on false coincidences, yet a noteworthy influence on background subtraction. We apply our algorithm to data obtained in experiments and discuss the impact of laser fluctuations on the data analysis

    Ultrafast Molecular Transport on Carbon Surfaces: The Diffusion of Ammonia on Graphite

    Get PDF
    We present a combined experimental and theoretical study of the self-diffusion of ammonia on exfoliated graphite. Using neutron time-of-flight spectroscopy we are able to resolve the ultrafast diffusion process of adsorbed ammonia, NH3_3, on graphite. Together with van der Waals corrected density functional theory calculations we show that the diffusion of NH3_3 follows a hopping motion on a weakly corrugated potential energy surface with an activation energy of about 4 meV which is particularly low for this type of diffusive motion. The hopping motion includes further a significant number of long jumps and the diffusion constant of ammonia adsorbed on graphite is determined with D=3.9 \cdot 10^{-8}~\mbox{m}^2 /\mbox{s} at 94 K

    Surface electronic corrugation of a one-dimensional topological metal: Bi(114)

    Get PDF
    The surface of Bi(114) is a striking example where the reduced dimensionality gives rise to structural rearrangement and new states at the surface. Here, we present a study of the surface structure and electronic corrugation of this quasi one-dimensional topological metal based on helium atom scattering (HAS) measurements. In contrast to low-index metal surfaces, upon scattering from the stepped (114) truncation of Bi, a large proportion of the incident beam is scattered into higher order diffraction channels which in combination with the large surface unit cell makes an analysis challenging. The surface electronic corrugation of Bi(114) is determined, using measurements upon scattering normal to the steps, together with quantum mechanical scattering calculations. Therefore, minimisation routines that vary the shape of the corrugation are employed, in order to minimise the deviation between the calculations and experimental scans. Furthermore, we illustrate that quantum mechanical scattering calculations can be used to determine the orientation of the in- and outgoing beam with respect to the stepped surface structure

    Observation of Dirac Charge Density Waves in Bi2_2Te2_2Se

    Full text link
    While parallel segments in the Fermi level contours, often found at the surfaces of topological insulators (TIs) would imply "strong" nesting conditions, the existence of charge density waves (CDWs) - periodic modulations of the electron density - has not been verified up to now. Here, we report the observation of a CDW at the surface of the Bi2_2Te2_2Se(111), below ≈350 \approx 350\,K by helium atom scattering, and thus experimental evidence of a CDW involving Dirac topological electrons. Deviations of the order parameter observed below 180 180\,K and a low temperature break of time reversal symmetry suggest the onset of a spin density wave with the same period as the CDW in presence of a prominent electron-phonon interaction originating from the Rashba spin-orbit coupling

    A Helium-Surface Interaction Potential of Bi2_2Te3_3(111) from Ultrahigh-Resolution Spin-Echo Measurements

    Full text link
    We have determined an atom-surface interaction potential for the He−-Bi2_2Te3_3(111) system by analysing ultrahigh resolution measurements of selective adsorption resonances. The experimental measurements were obtained using 3^3He spin-echo spectrometry. Following an initial free-particle model analysis, we use elastic close-coupling calculations to obtain a three-dimensional potential. The three-dimensional potential is then further refined based on the experimental data set, giving rise to an optimised potential which fully reproduces the experimental data. Based on this analysis, the He−-Bi2_2Te3_3(111) interaction potential can be described by a corrugated Morse potential with a well depth D=(6.22±0.05) meVD=(6.22\pm0.05)~\mathrm{meV}, a stiffness κ=(0.92±0.01) A˚−1\kappa =(0.92\pm0.01)~\mathrm{\AA}^{-1} and a surface electronic corrugation of (9.6±0.2)(9.6\pm0.2)% of the lattice constant. The improved uncertainties of the atom-surface interaction potential should also enable the use in inelastic close-coupled calculations in order to eventually study the temperature dependence and the line width of selective adsorption resonances
    • …
    corecore