49 research outputs found

    Forensic NMR metabolomics: one more arrow in the quiver

    Get PDF
    Introduction: NMR metabolomics is increasingly used in forensics, due to the possibility of investigating both endogenous metabolic profiles and exogenous molecules that may help to describe metabolic patterns and their modifications associated to specific conditions of forensic interest. Objectives: The aim of this work was to review the recent literature and depict the information provided by NMR metabolomics. Attention has been devoted to the identification of peculiar metabolic signatures and specific ante-mortem and post-mortem profiles or biomarkers related to different conditions of forensic concern, such as the identification of biological traces, the estimation of the time since death, and the exposure to drugs of abuse. Results and Conclusion: The results of the described studies highlight how forensics can benefit from NMR metabolomics by gaining additional information that may help to shed light in several forensic issues that still deserve to be further elucidated

    The architecture of corneal stromal striae on optical coherence tomography and histology in an animal model and in humans

    Get PDF
    The purpose of this study was to use a portable optical coherence tomography (OCT) for characterization of corneal stromal striae (CSS) in an ovine animal model and human corneas with histological correlation, in order to evaluate their architectural pattern by image analysis. Forty-six eyes from female adult sheep (older than 2 years), and 12 human corneas, were included in our study. The eyes were examined in situ by a portable OCT, without enucleation. All OCT scans were performed immediately after death, and then the eyes were delivered to a qualified histology laboratory. In the ovine animal model, CSS were detected with OCT in 89.1% (41/46) of individual scans and in 93.4% (43/46) of histological slices. In human corneas, CSS were found in 58.3% (7/12) of cases. In both corneal types, CSS appeared as “V”- or “X”-shaped structures, with very similar angle values of 70.8° ± 4° on OCT images and 71° ± 4° on histological slices (p ≤ 0.01). Data analysis demonstrated an excellent degree of reproducibility and inter-rater reliability of measurements (p < 0.001). The present study demonstrated that by using a portable OCT device, CSS can be visualized in ovine and human corneas. This finding suggests their generalized presence in various mammals. The frequent observation, close to 60%, of such collagen texture in the corneal stroma, similar to a ‘truss bridge’ design, permits to presume that it plays an important structural role, aimed to distribute tensile and compressive forces in various directions, conferring resilience properties to the cornea

    Postmortem Ocular Findings in the Optical Coherence Tomography Era: A Proof of Concept Study Based on Six Forensic Cases

    Get PDF
    Postmortem analysis of the ocular globe is an important topic for forensic pathology and transplantology. Although crucial elements may be gathered from examining cadaveric eyes, the latter do not routinely undergo in-depth analysis. The paucity of quantitative and objective data that are obtainable using current, invasive necroscopic techniques is the main reason for the limited interest in this highly specialized procedure. The aim of the current study is to describe and to object for the first time the postmortem ocular changes by mean of portable optical coherence tomography for evaluating ocular tissues postmortem. The design involved the postmortem analysis (in situ, and without enucleation) of 12 eyes by portable spectral-domain Optical Coherence Tomography. The scans were performed, in corneal, retinal and angle modality at different intervals: <6 h, 6th, 12th, and 24th hour and after autopsy (25th–72nd hour). The morphological changes in the cornea, sclera, vitreous humor and aqueous humor were easy to explore and objectify in these tissues in first 72 h postmortem. On the other hand, the “in situ” observation of the retina was difficult due to the opacification of the lenses in the first 24 h after death

    Repeatability and reproducibility of post-mortem central corneal thickness measurements using a portable optical coherence tomography system in humans: a prospective multicenter study

    Get PDF
    To assess the repeatability and reproducibility of post-mortem central corneal thickness (CCT) measurements made by the portable iVue spectra-domain (SD) optical coherence tomography OCT (Optovue Inc, Fremont, CA) system in humans, and to prospectively establish the time-course of CCT after death. In a prospective multicenter setting, CCT measurements were obtained from 58 human eyes at the following 16 time-points after death: immediately (within 2 h), and at each hour by the next 17 h. The range of CCT values for each subject was determined and longitudinal data were used to illustrate the variation in open and close eye mode. All measurements were made by two independent and well-trained examiners for session. Main outcome measures were intraclass correlation coefficients (ICC), repeatability and reproducibility coefficients, and coefficients of variation of the average central (0-2 mm). Overall, a total of 5,568 OCT measurements were performed by examiners. The repeatability coefficient varied from 0.3 to 1.7% and the reproducibility coefficient varied from 0.3 to 1.6% throughout the entire experimental time frame. Furthermore, the values of the different ICCs were also high during the different postmortem intervals, thus demonstrating the excellent repeatability and reproducibility of the present OCT approach. When CCT measurements were analyzed longitudinally, corneal thickness showed different behavior based on the open or close eye mode. The present study demonstrates that portable OCT imaging can be reliably used for corneal pachymetric measurements in supine subjects and during the post mortem period, i.e. without visual fixation and normal physiology/architecture of examined tissues

    Occupational Exposure to Fine Particles and Ultrafine Particles in a Steelmaking Foundry

    Get PDF
    Several studies have shown an increased mortality rate for different types of tumors, respiratory disease and cardiovascular morbidity associated with foundry work. Airborne particles were investigated in a steelmaking foundry using an electric low-pressure impactor (ELPI+™), a Philips Aerasense Nanotracer and traditional sampling equipment. Determination of metallic elements in the collected particles was carried out by inductively coupled plasma mass spectrometry. The median of ultrafine particle (UFP) concentration was between 4.91 × 103 and 2.33 × 105 part/cm3 (max. 9.48 × 106 part/cm3). Background levels ranged from 1.97 × 104 to 3.83 × 104 part/cm3. Alveolar and deposited tracheobronchial surface area doses ranged from 1.3 × 102 to 8.7 × 103 mm2, and 2.6 × 101 to 1.3 × 103 mm2, respectively. Resulting inhalable and respirable fraction and metallic elements were below limit values set by Italian legislation. A variable concentration of metallic elements was detected in the different fractions of UFPs in relation to the sampling site, the emission source and the size range. This data could be useful in order to increase the knowledge about occupational exposure to fine and ultrafine particles and to design studies aimed to investigate early biological effects associated with the exposure to particulate matter in the foundry industries

    Looking for Post-Mortem Metabolomic Standardization: Waiting for Godot—The Importance of Post-Mortem Interval in Forensic Metabolomics

    No full text
    A growing body of evidence suggests that the post-mortem interval exerts a strong effect on the metabolome, independently of the biological matrix or the cause of death. A sound and shared approach in standardization is mandatory

    The Ocular Surface and the Coronavirus Disease 2019: Does a Dual ‘Ocular Route’ Exist?

    No full text
    Coronavirus disease 2019 (COVID-19) is an important health problem that was definedas a pandemic by the World Health Organization on 11 March 2020. Although great concern hasbeen expressed about COVID-19 infection acquired through ocular transmission, its underlyingmechanism has not currently been clarified. In the current work, we analyzed and elucidated the twomain elements that should be taken into account to understand the “ocular route”, both from a clinicaland molecular point of view. They are represented by the dynamism of the ocular surface system(e.g., the tear film turnover) and the distribution of ACE2 receptors and TMPRSS2 protein. Althoughit seems, at the moment, that there is a low risk of coronavirus spreading through tears, it may survivefor a long time or replicate in the conjunctiva, even in absence of conjunctivitis signs, indicating thateye protection (e.g., protective goggles alone or in association with face shield) is advisable to preventcontamination from external droplets and aerosol

    The Bull’s Eye Pattern of the Tear Film in Humans during Visual Fixation on En-Face Optical Coherence Tomography

    No full text
    The aim of the study was to define and characterize the optical behavior of the tear film during visual fixation in humans on en-face optical coherence tomography (OCT). We included 20 healthy participants, 60% female, aged from 25 to 42 years (33.05 ± 4.97 [mean ± SD]) and ten patients with severe dry eye, 50% female, aged from 26 to 42 years (33.7 ± 5.31). To perform high-resolution tear film imaging, participants were asked to gaze at the internal fixation point in the spectral-domain anterior segment OCT device, and meanwhile scanning session was executed at the following time-points after blinking: at the 2 nd , 3 rd , 4 th , 5 th , and 6 th second. After one hour, OCT imaging was repeated (second session) by a different operator masked to the study to verify the reliability of results. During each measuring session, a pulse oximetry was used for continuously measuring the heart rate and oxygen saturation (SpO 2 %). A preliminary experiment was also performed to test the absence of geometric patterns from the anterior surface of a motionless artificial eye. OCT imaging showed a motionless, stable anterior surface of the artificial eye and in dry eye patients. Conversely, in the healthy participants of the study, a bull’s eye pattern of the tear film was detected by OCT at the 2 nd , 3 rd , 4 th , 5 th , and 6 th second after blinking, respectively, in 45%, 60%, 45%, 60%, and 40% of OCT scans during the first session, and in 35%, 65%, 65%, 60%, and 35% of cases in the second session. Overall, a total of 200 OCT scans were performed in normal human population. A significant correlation was found between the novel tear film pattern and heart rate during the first and the second session (p < 0.01) in healthy eyes. Conversely, no correlation was revealed with SpO2%. Intraclass correlation (ICC) analysis for OCT imaging of the tear film revealed a statistically significant reproducibility of the results (ICC = 0.838; p < 0.01), indicating the high level of reliability of the method, independently of heart rate and SpO2% variables. There exists a novel, geometric pattern of the tear film during visual fixation detectable by en-face OCT, which is mainly evident as heart rate increases. Its discovery implies in turn the presence of a specific vibration (or imperceptible motion) of the tear film that, at present, is not recognized and corrected by the OCT software (in image postprocessing) unlike other eyeball movements
    corecore