59 research outputs found

    Exchange current density as an effective descriptor of poisoning of active sites in platinum group metal-free electrocatalysts for oxygen reduction reaction

    Get PDF
    The oxygen reduction reaction (ORR) is of primary importance for the direct and clean conversion of energy in fuel cells, necessarily requiring an electrocatalyst to be exploited. At the state of the art, platinum group metal-free (PGM-free) electrocatalysts are the most promising alternative to carbon-supported Pt nanoparticles (Pt/C), which are more expensive and more performing but highly prone to deactivation in a contaminated working environment. The comparison of the two materials is at the level of fine-tuning, requiring specific activity descriptors, namely, turnover frequency (TOF) and site density (SD), to understand how to compare the performance of PGM-free electrocatalysts with Pt/C electrocatalysts. Specific probing molecules that bind with the active sites are required to evaluate the SD of PGM-free electrocatalysts. However, PGM-free electrocatalysts possess not a single active site like Pt/C, but a multitude of primary (metal-containing) and secondary (metal-free) sites arising from the pyrolysis synthesis process, eventually complicating SD evaluation. In this work, we propose a method for evaluating the direct interaction through the chemisorption of probing molecules over the PGM-free primary and secondary sites, the discrimination of which is of paramount importance in an effective SD evaluation. Based on the rotating disk electrode technique, the study investigates the electrochemistry of Fe-based PGM-free electrocatalysts poisoned with hydrogen sulfide at pH 1 in comparison with a Pt/C sample. In addition, X-ray photoelectron spectroscopy (XPS) is used to establish a relationship between the electrochemistry and surface chemistry of the poisoned material. The results identify the exchange current density as a meaningful tool that allows the discrimination of poisoning of specific active sites (metal-containing or metal-free). In addition, the understanding of the interaction phenomenon occurring between sites and probing molecules will be paramount for the selection of those contaminants capable of selectively interacting with the active sites of interest, paving the way to a more accurate SD evaluation

    Room-temperature emitters in wafer-scale few-layer hBN by atmospheric pressure CVD

    Get PDF
    Hexagonal boron nitride (hBN) is a two-dimensional, wide band gap semiconductor material suitable for several technologies. 2D hBN appeared as a viable platform to produce bright and optically stable single photon emitters (SPEs) at room temperature, which are in demand for quantum technologies. In this context, one main challenge concerns the upscaling of 2D hBN with uniform spatial and spectral distribution of SPE sources. In this work we optimized the atmospheric-pressure chemical vapor deposition (APCVD) growth and obtained large-area 2D hBN with uniform fluorescence emission properties. We characterized the hBN films by a combination of electron microscopy, Raman and X-ray photoelectron spectroscopy techniques. The extensive characterization revealed few-layer, polycrystalline hBN films (∼3 nm thickness) with balanced stoichiometry and uniformity over 2″ wafer scale. We studied the fluorescence emission properties of the hBN films by multidimensional hyperspectral fluorescence microscopy. We measured simultaneously the spatial position, intensity, and spectral properties of the emitters, which were exposed to continuous illumination over minutes. Three main emission peaks (at 538, 582, and 617 nm) were observed, with associated replica peaks red-shifted by ∼53 nm. A surface emitter density of ∼0.1 emitters/μm2 was found. A comparative test with pristine hBN nanosheets produced by liquid-phase exfoliation (LPE) was performed, finding that CVD and LPE hBN possess analogous spectral emitter categories in terms of peak position/intensity and density. Overall, the line-shape and wavelength of the emission peaks, as well as the other measured features, are consistent with single-photon emission from hBN. The results indicate that APCVD hBN might proficiently serve as a SPE platform for quantum technologies.We acknowledge the financial support of i) the project “GEMIS – Graphene-enhanced Electro Magnetic Interference Shielding,” with the reference POCI-01-0247-FEDER-045939, co-funded by COMPETE 2020 – Operational Programme for Competitiveness and Internationalization and FCT –Science and Technology Foundation, under the Portugal 2020 Partnership Agreement, through the European Regional Development Fund (ERDF); ii) the project "Graphene and novel thin films for super-resolution microscopy and bio-sensing" (PTDC/NAN-OPT/29417/2017) financed by ERDF, through the Competitiveness and Internationalization Operational Program (POCI) by Portugal 2020 and by the Portuguese Foundation for Science and Technology (FCT) with references POCI-01-0145-FEDER-029417 and PTDC/NAN-OPT/29417/2017; iii) the FCT in the framework of the Strategic Funding UIDB/04650/2020. One of the authors (T.Q.) acknowledges the FCT financial support under the Quantum Portugal Initiative Ph.D. scholarship SFRH/BD/150646/2020. We acknowledge the support by the INL AEMIS, Micro- and Nanofabrication, and Nanophotonics and Bioimaging research core facilities

    Complex domain wall dynamics in compressively strained GaMnAs epilayers

    Full text link
    The domain wall induced reversal dynamics in compressively strained GaMnAs was studied employing the magneto-optical Kerr effect and Kerr microscopy. Due to the influence of an uniaxial part in the in-plane magnetic anisotropy (90+/-Delta) domain walls with considerably different dynamic behavior are observed. While the (90+Delta) reversal is identified to be propagation dominated with a small number of domain walls, the case of (90-Delta) reversal includes the nucleation of many domain walls. The domain wall nucleation/propagation energy for both transitions are estimated using model calculations from which we conclude that single domain devices can be achievable using the (90+Delta) mode.Comment: 4 figure

    Interface formation during the growth of phase change material heterostructures based on Ge-Rich Ge-Sb-Te alloys

    Get PDF
    In this study, we present a full characterization of the electronic properties of phase change material (PCM) double-layered heterostructures deposited on silicon substrates. Thin films of amorphous Ge-rich Ge-Sb-Te (GGST) alloys were grown by physical vapor deposition on Sb2Te3 and on Ge2Sb2Te5 layers. The two heterostructures were characterized in situ by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS) during the formation of the interface between the first and the second layer (top GGST film). The evolution of the composition across the heterostructure interface and information on interdiffusion were obtained. We found that, for both cases, the final composition of the GGST layer was close to Ge2SbTe2 (GST212), which is a thermodynamically favorable off-stoichiometry GeSbTe alloy in the Sb-GeTe pseudobinary of the ternary phase diagram. Density functional theory calculations allowed us to calculate the density of states for the valence band of the amorphous phase of GST212, which was in good agreement with the experimental valence bands measured in situ by UPS. The same heterostructures were characterized by X-ray diffraction as a function of the annealing temperature. Differences in the crystallization process are discussed on the basis of the photoemission results

    Aggregation properties of a therapeutic peptide for rheumatoid arthritis: a spectroscopic and molecular dynamics study

    Get PDF
    The biological properties of therapeutic peptides, such as their pharmacokinetics and pharmacodynamics, are correlated with their structure and aggregation properties. Herein, we studied the aggregation properties of a therapeutic peptide (CIGB-814), currently in phase 2 clinical trial, for the treatment of rheumatoid arthritis over a wide range of concentrations (μM–mM). We applied spectroscopic techniques (fluorescence, circular dichro- ism, resonance, and dynamic light scattering), atomic force microscopy, and molecular dynamics simulations to determine the aggregation mechanism of CIGB-814. We found that the hierarchical aggregation of CIGB-814 at micromolar concentrations was initiated by the formation of peptide oligomers. Subsequently, the peptide oligomers trigger the nucleation and growth of peptide nanostructures (cac = 123 μM), ultimately leading to the fibrillization of CIGB-814 (cac’ = 508 μM). These results pave the way for a deeper understanding of the CIGB-814 therapeutic activity and may give important insights on its pharmacokinetics

    Growth, electronic and electrical characterization of Ge-Rich Ge-Sb-Te alloy

    Get PDF
    In this study, we deposit a Ge-rich Ge-Sb-Te alloy by physical vapor deposition (PVD) in the amorphous phase on silicon substrates. We study in-situ, by X-ray and ultraviolet photoemission spectroscopies (XPS and UPS), the electronic properties and carefully ascertain the alloy composition to be GST 29 20 28. Subsequently, Raman spectroscopy is employed to corroborate the results from the photoemission study. X-ray diffraction is used upon annealing to study the crystallization of such an alloy and identify the effects of phase separation and segregation of crystalline Ge with the formation of grains along the [111] direction, as expected for such Ge-rich Ge-Sb-Te alloys. In addition, we report on the electrical characterization of single memory cells containing the Ge-rich Ge-Sb-Te alloy, including I-V characteristic curves, programming curves, and SET and RESET operation performance, as well as upon annealing temperature. A fair alignment of the electrical parameters with the current state-of-the-art of conventional (GeTe)n-(Sb2Te3)m alloys, deposited by PVD, is found, but with enhanced thermal stability, which allows for data retention up to 230 °C

    Observation of gravitational waves from the coalescence of a 2.5−4.5 M⊙ compact object and a neutron star

    Get PDF

    Search for eccentric black hole coalescences during the third observing run of LIGO and Virgo

    Get PDF
    Despite the growing number of confident binary black hole coalescences observed through gravitational waves so far, the astrophysical origin of these binaries remains uncertain. Orbital eccentricity is one of the clearest tracers of binary formation channels. Identifying binary eccentricity, however, remains challenging due to the limited availability of gravitational waveforms that include effects of eccentricity. Here, we present observational results for a waveform-independent search sensitive to eccentric black hole coalescences, covering the third observing run (O3) of the LIGO and Virgo detectors. We identified no new high-significance candidates beyond those that were already identified with searches focusing on quasi-circular binaries. We determine the sensitivity of our search to high-mass (total mass M>70 M⊙) binaries covering eccentricities up to 0.3 at 15 Hz orbital frequency, and use this to compare model predictions to search results. Assuming all detections are indeed quasi-circular, for our fiducial population model, we place an upper limit for the merger rate density of high-mass binaries with eccentricities 0<e≤0.3 at 0.33 Gpc−3 yr−1 at 90\% confidence level

    Ultralight vector dark matter search using data from the KAGRA O3GK run

    Get PDF
    Among the various candidates for dark matter (DM), ultralight vector DM can be probed by laser interferometric gravitational wave detectors through the measurement of oscillating length changes in the arm cavities. In this context, KAGRA has a unique feature due to differing compositions of its mirrors, enhancing the signal of vector DM in the length change in the auxiliary channels. Here we present the result of a search for U(1)B−L gauge boson DM using the KAGRA data from auxiliary length channels during the first joint observation run together with GEO600. By applying our search pipeline, which takes into account the stochastic nature of ultralight DM, upper bounds on the coupling strength between the U(1)B−L gauge boson and ordinary matter are obtained for a range of DM masses. While our constraints are less stringent than those derived from previous experiments, this study demonstrates the applicability of our method to the lower-mass vector DM search, which is made difficult in this measurement by the short observation time compared to the auto-correlation time scale of DM
    corecore