48 research outputs found

    Role of Endothelial Progenitor Cells and Inflammatory Cytokines in Healing of Diabetic Foot Ulcers

    Get PDF
    Background: To evaluate changes in endothelial progenitor cells (EPCs) and cytokines in patients with diabetic foot ulceration (DFU) in association with wound healing. Methods: We studied healthy subjects, diabetic patients not at risk of DFU, at risk of DFU and with active DFU. We prospectively followed the DFU patients over a 12-week period. We also investigated similar changes in diabetic rabbit and mouse models of wound healing. Results: All EPC phenotypes except the kinase insert domain receptor (KDR)+CD133+ were reduced in the at risk and the DFU groups compared to the controls. There were no major EPC differences between the control and not at risk group, and between the at risk and DFU groups. Serum stromal-cell derived factor-1 (SDF-1) and stem cell factor (SCF) were increased in DFU patients. DFU patients who healed their ulcers had lower CD34+KDR+ count at visits 3 and 4, serum c-reactive protein (CRP) and granulocyte-macrophage colony-stimulating factor (GM-CSF) at visit 1, interleukin-1 (IL-1) at visits 1 and 4. EPCs tended to be higher in both diabetic animal models when compared to their non-diabetic counterparts both before and ten days after wounding. Conclusions: Uncomplicated diabetes does not affect EPCs. EPCs are reduced in patients at risk or with DFU while complete wound healing is associated with CD34+KDR+ reduction, suggesting possible increased homing. Low baseline CRP, IL-1α and GM-CSF serum levels were associated with complete wound healing and may potentially serve as prognostic markers of DFU healing. No animal model alone is representative of the human condition, indicating the need for multiple experimental models

    Bioactive Antimicrobial Peptides as Therapeutic Agents for Infected Diabetic Foot Ulcers

    No full text
    Diabetic foot ulcer (DFU) is a devastating complication, affecting around 15% of diabetic patients and representing a leading cause of non-traumatic amputations. Notably, the risk of mixed bacterial-fungal infection is elevated and highly associated with wound necrosis and poor clinical outcomes. However, it is often underestimated in the literature. Therefore, polymicrobial infection control must be considered for effective management of DFU. It is noteworthy that antimicrobial resistance is constantly rising overtime, therefore increasing the need for new alternatives to antibiotics and antifungals. Antimicrobial peptides (AMPs) are endogenous peptides that are naturally abundant in several organisms, such as bacteria, amphibians and mammals, particularly in the skin. These molecules have shown broad-spectrum antimicrobial activity and some of them even have wound-healing activity, establishing themselves as ideal candidates for treating multi-kingdom infected wounds. Furthermore, the role of AMPs with antifungal activity in wound management is poorly described and deserves further investigation in association with antibacterial agents, such as antibiotics and AMPs with antibacterial activity, or alternatively the application of broad-spectrum antimicrobial agents that target both aerobic and anaerobic bacteria, as well as fungi. Accordingly, the aim of this review is to unravel the molecular mechanisms by which AMPs achieve their dual antimicrobial and wound-healing properties, and to discuss how these are currently being applied as promising therapies against polymicrobial-infected chronic wounds such as DFUs

    Green Antimicrobials as Therapeutic Agents for Diabetic Foot Ulcers

    No full text
    Diabetic foot ulcers (DFU) are one of the most serious and devastating complications of diabetes and account for a significant decrease in quality of life and costly healthcare expenses worldwide. This condition affects around 15% of diabetic patients and is one of the leading causes of lower limb amputations. DFUs generally present poor clinical outcomes, mainly due to the impaired healing process and the elevated risk of microbial infections which leads to tissue damage. Nowadays, antimicrobial resistance poses a rising threat to global health, thus hampering DFU treatment and care. Faced with this reality, it is pivotal to find greener and less environmentally impactful alternatives for fighting these resistant microbes. Antimicrobial peptides are small molecules that play a crucial role in the innate immune system of the host and can be found in nature. Some of these molecules have shown broad-spectrum antimicrobial properties and wound-healing activity, making them good potential therapeutic compounds to treat DFUs. This review aims to describe antimicrobial peptides derived from green, eco-friendly processes that can be used as potential therapeutic compounds to treat DFUs, thereby granting a better quality of life to patients and their families while protecting our fundamental bio-resources

    Innovative Functional Biomaterials as Therapeutic Wound Dressings for Chronic Diabetic Foot Ulcers

    Get PDF
    The imbalance of local and systemic factors in individuals with diabetes mellitus (DM) delays, or even interrupts, the highly complex and dynamic process of wound healing, leading to diabetic foot ulceration (DFU) in 15 to 25% of cases. DFU is the leading cause of non-traumatic amputations worldwide, posing a huge threat to the well-being of individuals with DM and the healthcare system. Moreover, despite all the latest efforts, the efficient management of DFUs still remains a clinical challenge, with limited success rates in treating severe infections. Biomaterial-based wound dressings have emerged as a therapeutic strategy with rising potential to handle the tricky macro and micro wound environments of individuals with DM. Indeed, biomaterials have long been related to unique versatility, biocompatibility, biodegradability, hydrophilicity, and wound healing properties, features that make them ideal candidates for therapeutic applications. Furthermore, biomaterials may be used as a local depot of biomolecules with anti-inflammatory, pro-angiogenic, and antimicrobial properties, further promoting adequate wound healing. Accordingly, this review aims to unravel the multiple functional properties of biomaterials as promising wound dressings for chronic wound healing, and to examine how these are currently being evaluated in research and clinical settings as cutting-edge wound dressings for DFU management

    Inducible nitric oxide synthase isoform is a key mediator of leukostasis and blood-retinal barrier breakdown in diabetic retinopathy

    Get PDF
    PURPOSE: Nitric oxide (NO) is involved in leukostasis and blood-retinal barrier (BRB) breakdown in the early stages of diabetic retinopathy (DR), but it is unclear which NO synthase (NOS) isoforms are primarily involved. In this study, the authors aimed to clarify the involvement of constitutive (eNOS, nNOS) and inducible NOS (iNOS) isoforms and the mechanisms underlying NO-mediated leukostasis and BRB breakdown. METHODS: Diabetes was induced with streptozotocin for 2 weeks. Mice were treated with a NOS inhibitor, N(G)-nitro-L-arginine methyl ester (L-NAME), which shows a preference for constitutive isoforms over iNOS. Vessel leakage was assessed with Evans blue. Leukostasis was quantified in flat-mounted retinas with confocal microscopy, in vivo with a scanning laser ophthalmoscope, and in vitro in a retinal endothelial cell line. ICAM-1, occludin, and ZO-1 levels were assessed by Western blot, flow cytometry, or immunohistochemistry. Nitrotyrosine content was assessed by immunohistochemistry. RESULTS: Diabetes increased leukostasis within retinal vessels and BRB permeability, which were reduced by L-NAME. Similar effects were observed in diabetic iNOS knockout mice. In diabetic mouse retinas, ICAM-1 protein levels increased, whereas the immunoreactivity of tight junction proteins, occludin and ZO-1 decreased, in correlation with increased protein levels of all NOS isoforms. Those effects were prevented by L-NAME and also in diabetic iNOS knockout mice. High glucose and nitrosative/oxidative stress also increased leukostasis caused by ICAM-1 upregulation. CONCLUSIONS: These results indicate that the iNOS isoform plays a predominant role in leukostasis and BRB breakdown. The mechanism involves ICAM-1 upregulation and tight junction protein downregulationFoundation for Science and Technology, Portugal (Grant POCTI/CB/38545/01)FEDE

    Neurotoxicity Induced by Antiepileptic Drugs in Cultured Hippocampal Neurons: A Comparative Study between Carbamazepine, Oxcarbazepine, and Two New Putative Antiepileptic Drugs, BIA 2-024 and BIA 2-093

    Get PDF
    Purpose: Newly designed antiepileptic drugs (AEDs) are being evaluated for their efficacy in preventing seizures and for their toxic profiles. We investigated and compared the toxic effects of two dibenz[b,f]azepine derivatives with anticonvulsant activity, 10,11-dihydro-10-hydroxyimino-5H-dibenz[b,f]azepine-5-carboxamide (BIA2-024) and (S)-(-)-10-acetoxy-10,11-dihydro-5H-dibenz[b,f] azepine-5-carboxamide (BIA2-093), with the structurally related compounds carbamazepine (CBZ) and oxcarbazepine (OXC), both in current use for the treatment of epilepsy. Methods: Primary rat hippocampal neurons were used to evaluate neuronal morphology and biochemical changes induced by the AEDs used in this study. Immunocytochemical staining against MAP-2 was used to evaluate neuronal morphology. Reactive oxygen species (ROS) and changes in mitochondrial membrane potential (03A8m) were measured by fluorescence techniques. Intracellular adenosine triphosphate (ATP) levels were quantified by high-performance liquid chromatography (HPLC). Results: Hippocampal neurons treated for 24 h with CBZ or OXC (300 03BCM) showed degeneration and swelling of neurites, but this effect was not observed in neurons treated with BIA 2-024 or BIA 2-093 (300 03BCM). ROS production also was increased in neurons treated with OXC, but not in neurons treated with the other AEDs. ATP levels were significantly decreased only in neurons treated with OXC, although the energy charge was not altered. Furthermore, OXC led to a decrease of 03A8m. Conclusions: In all parameters assayed, OXC was more toxic than the other AEDs used. Because the new putative AEDs have previously been shown to have an efficacy in preventing seizures similar to that of CBZ and OXC, and are less toxic to neuronal cells, they may be considered as alternatives to the current available therapies for the treatment of epilepsy
    corecore