354 research outputs found

    Spectral properties of Google matrix of Wikipedia and other networks

    Get PDF
    We study the properties of eigenvalues and eigenvectors of the Google matrix of the Wikipedia articles hyperlink network and other real networks. With the help of the Arnoldi method we analyze the distribution of eigenvalues in the complex plane and show that eigenstates with significant eigenvalue modulus are located on well defined network communities. We also show that the correlator between PageRank and CheiRank vectors distinguishes different organizations of information flow on BBC and Le Monde web sites.Comment: 10 pages, 9 figure

    Google matrix analysis of directed networks

    Get PDF
    In past ten years, modern societies developed enormous communication and social networks. Their classification and information retrieval processing become a formidable task for the society. Due to the rapid growth of World Wide Web, social and communication networks, new mathematical methods have been invented to characterize the properties of these networks on a more detailed and precise level. Various search engines are essentially using such methods. It is highly important to develop new tools to classify and rank enormous amount of network information in a way adapted to internal network structures and characteristics. This review describes the Google matrix analysis of directed complex networks demonstrating its efficiency on various examples including World Wide Web, Wikipedia, software architecture, world trade, social and citation networks, brain neural networks, DNA sequences and Ulam networks. The analytical and numerical matrix methods used in this analysis originate from the fields of Markov chains, quantum chaos and Random Matrix theory.Comment: 56 pages, 58 figures. Missed link added in network example of Fig3

    Transient features of quantum open maps

    Get PDF
    We study families of open chaotic maps that classically share the same asymptotic properties -- forward and backwards trapped sets, repeller dimensions, escape rate -- but differ in their short time behavior. When these maps are quantized we find that the fine details of the distribution of resonances and the corresponding eigenfunctions are sensitive to the initial shape and size of the openings. We study phase space localization of the resonances with respect to the repeller and find strong delocalization effects when the area of the openings is smaller than \hbar.Comment: 7 pages, 7 figure

    Breaking Free with AI: The Deconfinement Transition

    Full text link
    Employing supervised machine learning techniques, we investigate the deconfinement phase transition within 44-dimensional SU(2)SU(2) Yang-Mills (YM) theory, compactified on a small circle and endowed with center-stabilizing potential. This exploration encompasses scenarios both without and with matter in either the fundamental or adjoint representations. Central to our study is a profound duality relationship, intricately mapping the YM theory onto an XY-spin model with Zp\mathbb Z_p-preserving perturbations. The parameter pp embodies the essence of the matter representation, with values of p=1p=1 and p=4p=4 for fundamental and adjoint representations, respectively, while p=2p=2 corresponds to pure YM theory. The logistic regression method struggles to produce satisfactory results, particularly in predicting the transition temperature. Contrarily, convolutional neural networks (CNNs) exhibit remarkable prowess, effectively foreseeing critical temperatures in cases where p=2p=2 and p=4p=4. Furthermore, by harnessing CNNs, we compute critical exponents at the transition, aligning favorably with computations grounded in conventional order parameters. Taking our investigation a step further, we use CNNs to lend meaning to phases within YM theory with fundamental matter. Notably, this theory lacks conventional order parameters. Interestingly, CNNs manage to predict a transition temperature in this context. However, the fragility of this prediction under variations in the boundaries of the training window undermines its utility as a robust order parameter. This outcome underscores the constraints inherent in employing supervised machine learning techniques as innovative substitutes for traditional order parameters.Comment: 12 pages, 8 figure

    Fractal Weyl law for Linux Kernel Architecture

    Full text link
    We study the properties of spectrum and eigenstates of the Google matrix of a directed network formed by the procedure calls in the Linux Kernel. Our results obtained for various versions of the Linux Kernel show that the spectrum is characterized by the fractal Weyl law established recently for systems of quantum chaotic scattering and the Perron-Frobenius operators of dynamical maps. The fractal Weyl exponent is found to be ν0.63\nu \approx 0.63 that corresponds to the fractal dimension of the network d1.2d \approx 1.2. The eigenmodes of the Google matrix of Linux Kernel are localized on certain principal nodes. We argue that the fractal Weyl law should be generic for directed networks with the fractal dimension d<2d<2.Comment: RevTex 6 pages, 7 figs, linked to arXiv:1003.5455[cs.SE]. Research at http://www.quantware.ups-tlse.fr/, Improved version, changed forma

    Dynamical thermalization of interacting fermionic atoms in a sinai oscillator trap

    Get PDF
    We study numerically the problem of dynamical thermalization of interacting cold fermionic atoms placed in an isolated Sinai oscillator trap. This system is characterized by a quantum chaos regime for one-particle dynamics. We show that, for a many-body system of cold atoms, the interactions, with a strength above a certain quantum chaos border given by the Åberg criterion, lead to the Fermi–Dirac distribution and relaxation of many-body initial states to the thermalized state in the absence of any contact with a thermostate. We discuss the properties of this dynamical thermalization and its links with the Loschmidt–Boltzmann dispute.Fil: Frahm, Klaus M.. Université Paul Sabatier; Francia. Centre National de la Recherche Scientifique; FranciaFil: Ermann, Leonardo. Comisión Nacional de Energía Atómica; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas; ArgentinaFil: Shepelyansky, Dima L.. Université Paul Sabatier; Franci

    On the environmental stability of quantum chaotic ratchets

    Full text link
    The transitory and stationary behavior of a quantum chaotic ratchet consisting of a biharmonic potential under the effect of different drivings in contact with a thermal environment is studied. For weak forcing and finite \hbar, we identify a strong dependence of the current on the structure of the chaotic region. Moreover, we have determined the robustness of the current against thermal fluctuations in the very weak coupling regime. In the case of strong forcing, the current is determined by the shape of a chaotic attractor. In both cases the temperature quickly stabilizes the ratchet, but in the latter it also destroys the asymmetry responsible for the current generation. Finally, applications to isomerization reactions are discussed.Comment: 6 pages, 5 figure

    Google matrix of business process management

    Full text link
    Development of efficient business process models and determination of their characteristic properties are subject of intense interdisciplinary research. Here, we consider a business process model as a directed graph. Its nodes correspond to the units identified by the modeler and the link direction indicates the causal dependencies between units. It is of primary interest to obtain the stationary flow on such a directed graph, which corresponds to the steady-state of a firm during the business process. Following the ideas developed recently for the World Wide Web, we construct the Google matrix for our business process model and analyze its spectral properties. The importance of nodes is characterized by Page-Rank and recently proposed CheiRank and 2DRank, respectively. The results show that this two-dimensional ranking gives a significant information about the influence and communication properties of business model units. We argue that the Google matrix method, described here, provides a new efficient tool helping companies to make their decisions on how to evolve in the exceedingly dynamic global market.Comment: submitted to European Journal of Physics

    Towards an arthritis flare-responsive drug delivery system

    Get PDF
    Local delivery of therapeutics for the treatment of inflammatory arthritis (IA) is limited by short intra-articular half-lives. Since IA severity often fluctuates over time, a local drug delivery method that titrates drug release to arthritis activity would represent an attractive paradigm in IA therapy. Here we report the development of a hydrogel platform that exhibits disassembly and drug release controlled by the concentration of enzymes expressed during arthritis flares. In vitro, hydrogel loaded with triamcinolone acetonide (TA) releases drug on-demand upon exposure to enzymes or synovial fluid from patients with rheumatoid arthritis. In arthritic mice, hydrogel loaded with a fluorescent dye demonstrates flare-dependent disassembly measured as loss of fluorescence. Moreover, a single dose of TA-loaded hydrogel but not the equivalent dose of locally injected free TA reduces arthritis activity in the injected paw. Together, our data suggest flare-responsive hydrogel as a promising next-generation drug delivery approach for the treatment of IA
    corecore