149 research outputs found

    Energy spectra for quantum wires and 2DEGs in magnetic fields with Rashba and Dresselhaus spin-orbit interactions

    Full text link
    We introduce an analytical approximation scheme to diagonalize parabolically confined two dimensional electron systems with both the Rashba and Dresselhaus spin-orbit interactions. The starting point of our perturbative expansion is a zeroth-order Hamiltonian for an electron confined in a quantum wire with an effective spin-orbit induced magnetic field along the wire, obtained by properly rotating the usual spin-orbit Hamiltonian. We find that the spin-orbit-related transverse coupling terms can be recast into two parts W and V, which couple crossing and non-crossing adjacent transverse modes, respectively. Interestingly, the zeroth-order Hamiltonian together with W can be solved exactly, as it maps onto the Jaynes-Cummings model of quantum optics. We treat the V coupling by performing a Schrieffer-Wolff transformation. This allows us to obtain an effective Hamiltonian to third order in the coupling strength k_Rl of V, which can be straightforwardly diagonalized via an additional unitary transformation. We also apply our approach to other types of effective parabolic confinement, e.g., 2D electrons in a perpendicular magnetic field. To demonstrate the usefulness of our approximate eigensolutions, we obtain analytical expressions for the n^th Landau-level g_n-factors in the presence of both Rashba and Dresselhaus couplings. For small values of the bulk g-factors, we find that spin-orbit effects cancel out entirely for particular values of the spin-orbit couplings. By solving simple transcendental equations we also obtain the band minima of a Rashba-coupled quantum wire as a function of an external magnetic field. These can be used to describe Shubnikov-de Haas oscillations. This procedure makes it easier to extract the strength of the spin-orbit interaction in these systems via proper fitting of the data.Comment: 13 pages, 11 figure

    Effect of external magnetic field on electron spin dephasing induced by hyperfine interaction in quantum dots

    Full text link
    We investigate the influence of an external magnetic field on spin phase relaxation of single electrons in semiconductor quantum dots induced by the hyperfine interaction. The basic decay mechanism is attributed to the dispersion of local effective nuclear fields over the ensemble of quantum dots. The characteristics of electron spin dephasing is analyzed by taking an average over the nuclear spin distribution. We find that the dephasing rate can be estimated as a spin precession frequency caused primarily by the mean value of the local nuclear magnetic field. Furthermore, it is shown that the hyperfine interaction does not fully depolarize electron spin. The loss of initial spin polarization during the dephasing process depends strongly on the external magnetic field, leading to the possibility of effective suppression of this mechanism.Comment: 10 pages, 2 figure

    Magnetic field induced effects in the high source-drain bias current of weakly coupled vertical quantum dot molecules

    Full text link
    We report on the basic properties of recently observed magnetic field resonance, induced time dependent oscillation, and hysteresis effects in the current flowing through two weakly coupled vertical quantum dots at high source-drain bias (up to a few tens of mV). These effects bare some similarity to those reported in the N=2 spin-blockade regime, usually for weak in-plane magnetic field, of quantum dot molecules and attributed to hyperfine coupling, except here the measurements are conducted outside of the spin-blockade regime and the out-of-plane magnetic field is up to ~6 T.Comment: 3 pages, 3 figures, accepted for publication in Physica E in EP2DS 17 conference proceeding

    Spin susceptibilities, spin densities and their connection to spin-currents

    Get PDF
    We calculate the frequency dependent spin susceptibilities for a two-dimensional electron gas with both Rashba and Dresselhaus spin-orbit interaction. The resonances of the susceptibilities depends on the relative values of the Rashba and Dresselhaus spin-orbit constants, which could be manipulated by gate voltages. We derive exact continuity equations, with source terms, for the spin density and use those to connect the spin current to the spin density. In the free electron model the susceptibilities play a central role in the spin dynamics since both the spin density and the spin current are proportional to them.Comment: 6 pages, revtex4 styl

    Strong ground motion from the seismic swarms preceding the 2021 and 2022 volcanic eruptions at Fagradalsfjall, Iceland

    Get PDF
    The Geldingadalir and Meradalir eruptions at Mt. Fagradalsfjall in the Reykjanes Peninsula on 19 March 2021 and 3 August 2022, respectively, were preceded by intense volcano-tectonic swarms. Eight earthquakes with M ≥ 5 were recorded by the Icelandic Strong Motion Network. We present an overview of the seismicity in Fagradalsfjall, and salient features of the strong ground motion caused by the swarms in the epicentral area. The largest recorded horizontal Peak Ground Acceleration (PGA) was ~ 0.45 g at Grindavík, which is the strongest PGA recorded in Iceland since the MW6.3 2008 Ölfus Earthquake. Recorded waveforms show a rich long-period energy content, with a burst of higher frequencies at the beginning of shaking. This leads to larger response spectral accelerations at long periods that those from typical shallow crustal earthquakes. Moreover, an empirical mixed-effects ground motion model for PGA, PGV and PSA was calibrated for rock sites based on the available recordings. The attenuation rate from this model is similar to that introduced by Lanzano and Luzi (Bull Earthq Eng 18(1):57–76, 2020) which is based on data from volcanic events in Italy, but the magnitude scaling of our model is much lower. The overall results indicate that scaling and attenuation of ground motion from volcanic events and purely tectonic earthquakes in Iceland are different. This is an important observation because seismic hazard in parts of the Reykjavik area and of the central highlands, where important hydroelectric power plants are located, could potentially be dominated by events of volcanic origin. Therefore, it is important to take these observations into account for seismic hazard and risk assessment in Iceland

    Current-Induced Entanglement of Nuclear Spins in Quantum Dots

    Full text link
    We propose an entanglement mechanism of nuclear spins in quantum dots driven by the electric current accompanied by the spin flip. This situation is relevant to a leakage current in spin-blocked regions where electrons cannot be transported unless their spins are flipped. The current gradually increases the components of larger total spin of nuclei. This correlation among the nuclear spins markedly enhances the spin-flip rate of electrons and hence the leakage current. The enhancement of the current is observable when the residence time of electrons in the quantum dots is shorter than the dephasing time T*_2 of nuclear spins.Comment: 4 pages, 4 figure

    New Insights into Traffic Dynamics: A Weighted Probabilistic Cellular Automaton Model

    Full text link
    From the macroscopic viewpoint for describing the acceleration behavior of drivers, this letter presents a weighted probabilistic cellular automaton model (the WP model, for short) by introducing a kind of random acceleration probabilistic distribution function. The fundamental diagrams, the spatio-temporal pattern are analyzed in detail. It is shown that the presented model leads to the results consistent with the empirical data rather well, nonlinear velocity-density relationship exists in lower density region, and a new kind of traffic phenomenon called neo-synchronized flow is resulted. Furthermore, we give the criterion for distinguishing the high-speed and low-speed neo-synchronized flows and clarify the mechanism of this kind of traffic phenomena. In addition, the result that the time evolution of distribution of headways is displayed as a normal distribution further validates the reasonability of the neo-synchronized flow. These findings suggest that the diversity and randomicity of drivers and vehicles has indeed remarkable effect on traffic dynamics.Comment: 12 pages, 5 figures, submitted to Europhysics Letter

    Quantum-dot spin qubit and hyperfine interaction

    Full text link
    We review our investigation of the spin dynamics for two electrons confined to a double quantum dot under the influence of the hyperfine interaction between the electron spins and the surrounding nuclei. Further we propose a scheme to narrow the distribution of difference in polarization between the two dots in order to suppress hyperfine induced decoherence.Comment: 12 pages, 3 figures; Presented as plenary talk at the annual DPG meeting 2006, Dresden (to appear in Advances in Solid State Physics vol. 46, 2006

    Triplet-Singlet Spin Relaxation via Nuclei in a Double Quantum Dot

    Full text link
    The spin of a confined electron, when oriented originally in some direction, will lose memory of that orientation after some time. Physical mechanisms leading to this relaxation of spin memory typically involve either coupling of the electron spin to its orbital motion or to nuclear spins. Relaxation of confined electron spin has been previously measured only for Zeeman or exchange split spin states, where spin-orbit effects dominate relaxation, while spin flips due to nuclei have been observed in optical spectroscopy studies. Using an isolated GaAs double quantum dot defined by electrostatic gates and direct time domain measurements, we investigate in detail spin relaxation for arbitrary splitting of spin states. Results demonstrate that electron spin flips are dominated by nuclear interactions and are slowed by several orders of magnitude when a magnetic field of a few millitesla is applied. These results have significant implications for spin-based information processing
    corecore