318 research outputs found

    Intelectin contributes to allergen-induced IL-25, IL-33, and TSLP expression and type 2 response in asthma and atopic dermatitis.

    Get PDF
    The epithelial and epidermal innate cytokines IL-25, IL-33, and thymic stromal lymphopoietin (TSLP) have pivotal roles in the initiation of allergic inflammation in asthma and atopic dermatitis (AD). However, the mechanism by which the expression of these innate cytokines is regulated remains unclear. Intelectin (ITLN) is expressed in airway epithelial cells and promotes allergic airway inflammation. We hypothesized that ITLN is required for allergen-induced IL-25, IL-33, and TSLP expression. In two asthma models, Itln knockdown reduced allergen-induced increases in Il-25, Il-33, and Tslp and development of type 2 response, eosinophilic inflammation, mucus overproduction, and airway hyperresponsiveness. Itln knockdown also inhibited house dust mite (HDM)-induced early upregulation of Il-25, Il-33, and Tslp in a model solely inducing airway sensitization. Using human airway epithelial cells, we demonstrated that HDM-induced increases in ITLN led to phosphorylation of epidermal growth factor receptor and extracellular-signal regulated kinase, which were required for induction of IL-25, IL-33, and TSLP expression. In two AD models, Itln knockdown suppressed expression of Il-33, Tslp, and Th2 cytokines and eosinophilic inflammation. In humans, ITLN1 expression was significantly increased in asthmatic airways and in lesional skin of AD. We conclude that ITLN contributes to allergen-induced Il-25, Il-33, and Tslp expression in asthma and AD

    Vedolizumab: an α4β7 integrin antagonist for ulcerative colitis and Crohn’s disease

    Get PDF
    Ulcerative colitis (UC) and Crohn’s disease (CD) are chronic, relapsing inflammatory bowel diseases associated with significant morbidity. Conventional therapies for these diseases include corticosteroids, aminosalicylates, immunomodulators, and monoclonal antibodies. Over the years tumor necrosis factor (TNF)-α antagonists alone or in combination with other therapies have emerged as the cornerstone of treatment for induction and maintenance of remission of moderate to severe UC and CD. Unfortunately, some patients with moderate to severe UC and CD are unable to attain or maintain remission with TNF-α antagonist treatment. Vedolizumab, a humanized monoclonal antibody, is the first integrin receptor antagonist approved that selectively antagonizes α4β7 gastrointestinal integrin receptors. US Food and Drug Administration approval is for treatment of patients with moderate to severe active UC and CD who have inadequate response with, lost response to, or are intolerant to a TNF-α antagonist or an immunomodulator; or have inadequate response with, are intolerant to, or demonstrate dependence on corticosteroids. When administered according to approved dosing in patients with moderate to severe CD and UC, vedolizumab induces clinical response rates up to 31.4% and 47.1% at week 6, and clinical remission rates up to 39% and 41.8% at week 52, respectively. Serious adverse events reported with vedolizumab include serious infections, malignancies, and anaphylaxis. Since vedolizumab is gastrointestinal selective, to date, it has not shown evidence of causing progressive multifocal leukoencephalopathy; however, postmarketing studies monitoring for this adverse effect are ongoing. Further assessment of vedolizumab earlier in the course of these diseases and in combination with other therapies is warranted

    Correction: Delayed Goblet Cell Hyperplasia, Acetylcholine Receptor Expression, and Worm Expulsion in SMC-Specific IL-4Rα–Deficient Mice

    Get PDF
    Interleukin 4 receptor alpha (IL-4Ralpha) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response-driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Ralpha pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Ralpha-deficient mice (SM-MHC(Cre)IL-4Ralpha(-/lox)) were generated and characterized to uncover any role for IL-4/IL-13 in this non-immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Ralpha was absent from alpha-actin-positive smooth muscle cells, while other cell types showed normal IL-4Ralpha expression, thus demonstrating efficient cell-type-specific deletion of the IL-4Ralpha gene. N. brasiliensis-infected SM-MHC(Cre)IL-4Ralpha(-/lox) mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Ralpha-responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions

    Delayed Goblet Cell Hyperplasia, Acetylcholine Receptor Expression, and Worm Expulsion in SMC-Specific IL-4Rα–Deficient Mice

    Get PDF
    Interleukin 4 receptor α (IL-4Rα) is essential for effective clearance of gastrointestinal nematode infections. Smooth muscle cells are considered to play a role in the type 2 immune response–driven expulsion of gastrointestinal nematodes. Previous studies have shown in vitro that signal transducer and activator of transcription 6 signaling in response to parasitic nematode infection significantly increases smooth muscle cell contractility. Inhibition of the IL-4Rα pathway inhibits this response. How this response manifests itself in vivo is unknown. In this study, smooth muscle cell IL-4Rα–deficient mice (SM-MHC(Cre)IL-4Rα(−/lox)) were generated and characterized to uncover any role for IL-4/IL-13 in this non–immune cell type in response to Nippostrongylus brasiliensis infection. IL-4Rα was absent from α-actin–positive smooth muscle cells, while other cell types showed normal IL-4Rα expression, thus demonstrating efficient cell-type–specific deletion of the IL-4Rα gene. N. brasiliensis–infected SM-MHC(Cre)IL-4Rα(−/lox) mice showed delayed ability to resolve infection with significantly prolonged fecal egg recovery and delayed worm expulsion. The delayed expulsion was related to a delayed intestinal goblet cell hyperplasia, reduced T helper 2 cytokine production in the mesenteric lymph node, and reduced M3 muscarinic receptor expression during infection. Together, these results demonstrate that in vivo IL-4Rα–responsive smooth muscle cells are beneficial for N. brasiliensis expulsion by coordinating T helper 2 cytokine responses, goblet hyperplasia, and acetylcholine responsiveness, which drive smooth muscle cell contractions

    Osmo-air drying of aloe vera gel cubes

    Get PDF
    Aloe vera (Aloe barbadensis Miller) cubes of 12.5 × 12.5 × 12.5 mm thick were osmosed for 4 h in sugar syrup of 30, 40 and 50°Brix concentration and temperatures of 30 and 50°C at constant syrup to fruit ratio of 5:1. Osmosed and unosmosed aloe vera samples were hot air dried at 50, 60, 70 and 80°C with constant air velocity of 1.5 m/s. The water loss, solid gain and convective drying behaviour were recorded during experiments. It was observed that water loss and solid gain ranged from 39.2 to 71.3 and 2.7 to 6.3%, respectively during osmo-drying. The moisture diffusivity varied from 2.9 to 8.0 × 10−9 m²/s and 2.7 to 4.6 × 10−9 m²/s during air drying of osmosed and unosmosed aloe vera samples, respectively. Drying air temperature and osmosis as pre-treatment affected the water loss, solid gain, diffusivity at −p ≤ 0.0

    An airway epithelial IL-17A response signature identifies a steroid-unresponsive COPD patient subgroup

    Get PDF
    BACKGROUND. Chronic obstructive pulmonary disease (COPD) is a heterogeneous smoking-related disease characterized by airway obstruction and inflammation. This inflammation may persist even after smoking cessation and responds variably to corticosteroids. Personalizing treatment to biologically similar "molecular phenotypes" may improve therapeutic efficacy in a COPD. IL-17A is involved in neutrophilic inflammation and corticosteroid resistance, and thus may be particularly important in a COPD molecular phenotype. METHODS. We generated a gene expression signature of IL-17A response in bronchial airway epithelial brushings from smokers with and without COPD (n = 238) , and validated it using data from 2 randomized trials of IL-17 blockade in psoriasis. This IL-17 signature was related to clinical and pathologic characteristics in 2 additional human studies of COPD: (a) SPIROMICS (n = 47), which included former and current smokers with COPD, and (b) GLUCOLD (n = 79), in which COPD participants were randomized to placebo or corticosteroids. RESULTS. The IL-17 signature was associated with an inflammatory profile characteristic of an IL-17 response, including increased airway neutrophils and macrophages. In SPIROMICS the signature was associated with increased airway obstruction and functional small airways disease on quantitative chest CT. In GLUCOLD the signature was associated with decreased response to corticosteroids, irrespective of airway eosinophilic or type 2 inflammation. CONCLUSION. These data suggest that a gene signature of IL-17 airway epithelial response distinguishes a biologically, radiographically, and clinically distinct COPD subgroup that may benefit from personalized therapy

    Consensus guidelines for the diagnosis and management of pyridoxine-dependent epilepsy due to alpha-aminoadipic semialdehyde dehydrogenase deficiency

    Get PDF
    Pyridoxine-dependent epilepsy (PDE-ALDH7A1) is an autosomal recessive condition due to a deficiency of α-aminoadipic semialdehyde dehydrogenase, which is a key enzyme in lysine oxidation. PDE-ALDH7A1 is a developmental and epileptic encephalopathy that was historically and empirically treated with pharmacologic doses of pyridoxine. Despite adequate seizure control, most patients with PDE-ALDH7A1 were reported to have developmental delay and intellectual disability. To improve outcome, a lysine-restricted diet and competitive inhibition of lysine transport through the use of pharmacologic doses of arginine have been recommended as an adjunct therapy. These lysine-reduction therapies have resulted in improved biochemical parameters and cognitive development in many but not all patients. The goal of these consensus guidelines is to re-evaluate and update the two previously published recommendations for diagnosis, treatment, and follow-up of patients with PDE-ALDH7A1. Members of the International PDE Consortium initiated evidence and consensus-based process to review previous recommendations, new research findings, and relevant clinical aspects of PDE-ALDH7A1. The guideline development group included pediatric neurologists, biochemical geneticists, clinical geneticists, laboratory scientists, and metabolic dieticians representing 29 institutions from 16 countries. Consensus guidelines for the diagnosis and management of patients with PDE-ALDH7A1 are provided. This article is protected by copyright. All rights reserved
    corecore