358 research outputs found

    Visualization of the distribution of autophosphorylated calcium/calmodulin-dependent protein kinase II after tetanic stimulation in the CA1 area of the hippocampus

    Get PDF
    Autophosphorylation of calcium/calmodulin-dependent protein kinase II (CaMKII) at threonine-286 produces Ca2+-independent kinase activity and has been proposed to be involved in induction of long-term potentiation by tetanic stimulation in the hippocampus. We have used an immunocytochemical method to visualize and quantify the pattern of autophosphorylation of CaMKII in hippocampal slices after tetanization of the Schaffer collateral pathway. Thirty minutes after tetanic stimulation, autophosphorylated CaM kinase II (P-CaMKII) is significantly increased in area CA1 both in apical dendrites and in pyramidal cell somas. In apical dendrites, this increase is accompanied by an equally significant increase in staining for nonphosphorylated CaM kinase II. Thus, the increase in P-CaMKII appears to be secondary to an increase in the total amount of CaMKII. In neuronal somas, however, the increase in P-CaMKII is not accompanied by an increase in the total amount of CaMKII. We suggest that tetanic stimulation of the Schaffer collateral pathway may induce new synthesis of CaMKII molecules in the apical dendrites, which contain mRNA encoding its alpha-subunit. In neuronal somas, however, tetanic stimulation appears to result in long-lasting increases in P-CaMKII independent of an increase in the total amount of CaMKII. Our findings are consistent with a role for autophosphorylation of CaMKII in the induction and/or maintenance of long-term potentiation, but they indicate that the effects of tetanus on the kinase and its activity are not confined to synapses and may involve induction of new synthesis of kinase in dendrites as well as increases in the level of autophosphorylated kinase

    Tetanic Stimulation Leads to Increased Accumulation of Ca^(2+)/Calmodulin-Dependent Protein Kinase II via Dendritic Protein Synthesis in Hippocampal Neurons

    Get PDF
    mRNA for the ɑ-subunit of CaMKII is abundant in dendrites of neurons in the forebrain (Steward, 1997). Here we show that tetanic stimulation of the Schaffer collateral pathway causes an increase in the concentration of ɑ-CaMKII in the dendrites of postsynaptic neurons. The increase is blocked by anisomycin and is detected by both quantitative immunoblot and semiquantitative immunocytochemistry. The increase in dendritic ɑ-CaMKII can be measured 100-200 µm away from the neuronal cell bodies as early as 5 min after a tetanus. Transport mechanisms for macromolecules from neuronal cell bodies are not fast enough to account for this rapid increase in distal portions of the dendrites. Therefore, we conclude that dendritic protein synthesis must produce a portion of the newly accumulated CaMKII. The increase in concentration of dendritic CaMKII after tetanus, together with the previously demonstrated increase in autophosphorylated CaMKII (Ouyang et al., 1997), will produce a prolonged increase in steady-state kinase activity in the dendrites, potentially influencing mechanisms of synaptic plasticity that are controlled through phosphorylation by CaMKII

    The CTLA-4 immune checkpoint protein regulates PD-L1:PD-1 interaction via transendocytosis of its ligand CD80

    Get PDF
    CTLA-4 and PD-1 are key immune checkpoint receptors that are targeted in the treatment of cancer. A recently identified physical interaction between the respective ligands, CD80 and PD-L1, has been shown to block PD-L1/PD-1 binding and to prevent PD-L1 inhibitory functions. Since CTLA-4 is known to capture and degrade its ligands via transendocytosis, we investigated the interplay between CD80 transendocytosis and CD80/PD-L1 interaction. We find that transendocytosis of CD80 results in a time-dependent recovery of PD-L1 availability that correlates with CD80 removal. Moreover, CD80 transendocytosis is highly specific in that only CD80 is internalised, while its heterodimeric PD-L1 partner remains on the plasma membrane of the antigen-presenting cell (APC). CTLA-4 interactions with CD80 do not appear to be inhibited by PD-L1, but efficient removal of CD80 requires an intact CTLA-4 cytoplasmic domain, distinguishing this process from more general trogocytosis and simple CTLA-4 binding to CD80/PD-L1 complexes. These data are consistent with CTLA-4 acting as modulator of PD-L1:PD-1 interactions via control of CD80

    Rapid phase adjustment of melatonin and core body temperature rhythms following a 6-h advance of the light/dark cycle in the horse

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Rapid displacement across multiple time zones results in a conflict between the new cycle of light and dark and the previously entrained program of the internal circadian clock, a phenomenon known as jet lag. In humans, jet lag is often characterized by malaise, appetite loss, fatigue, disturbed sleep and performance deficit, the consequences of which are of particular concern to athletes hoping to perform optimally at an international destination. As a species renowned for its capacity for athletic performance, the consequences of jet lag are also relevant for the horse. However, the duration and severity of jet lag related circadian disruption is presently unknown in this species. We investigated the rates of re-entrainment of serum melatonin and core body temperature (BT) rhythms following an abrupt 6-h phase advance of the LD cycle in the horse.</p> <p>Methods</p> <p>Six healthy, 2 yr old mares entrained to a 12 h light/12 h dark (LD 12:12) natural photoperiod were housed in a light-proofed barn under a lighting schedule that mimicked the external LD cycle. Following baseline sampling on Day 0, an advance shift of the LD cycle was accomplished by ending the subsequent dark period 6 h early. Blood sampling for serum melatonin analysis and BT readings were taken at 3-h intervals for 24 h on alternate days for 11 days. Disturbances to the subsequent melatonin and BT 24-h rhythms were assessed using repeated measures ANOVA and analysis of Cosine curve fitting parameters.</p> <p>Results</p> <p>We demonstrate that the equine melatonin rhythm re-entrains rapidly to a 6-h phase advance of an LD12:12 photocycle. The phase shift in melatonin was fully complete on the first day of the new schedule and rhythm phase and waveform were stable thereafter. In comparison, the advance in the BT rhythm was achieved by the third day, however BT rhythm waveform, especially its mesor, was altered for many days following the LD shift.</p> <p>Conclusion</p> <p>Aside from the temperature rhythm disruption, rapid resynchronization of the melatonin rhythm suggests that the central circadian pacemaker of the horse may possess a particularly robust entrainment response. The consequences for athletic performance remain unknown.</p

    Frog nest foams exhibit pharmaceutical foam-like properties

    Get PDF
    Foams have frequently been used as systems for the delivery of cosmetic and therapeutic molecules; however, there is high variability in the foamability and long-term stability of synthetic foams. The development of pharmaceutical foams that exhibit desirable foaming properties, delivering appropriate amounts of the active pharmaceutical ingredient (API) and that have excellent biocompatibility is of great interest. The production of stable foams is rare in the natural world; however, certain species of frogs have adopted foam production as a means of providing a protective environment for their eggs and larvae from predators and parasites, to prevent desiccation, to control gaseous exchange, to buffer temperature extremes, and to reduce UV damage. These foams show great stability (up to 10 days in tropical environments) and are highly biocompatible due to the sensitive nature of amphibian skin. This work demonstrates for the first time that nests of the túngara frog ( Engystomops pustulosus ) are stable ex situ with useful physiochemical and biocompatible properties and are capable of encapsulating a range of compounds, including antibiotics. These protein foam mixtures share some properties with pharmaceutical foams and may find utility in a range of pharmaceutical applications such as topical drug delivery systems

    A Gro/TLE-NuRD Corepressor Complex Facilitates Tbx20-Dependent Transcriptional Repression

    Get PDF
    The cardiac transcription factor Tbx20 has a critical role in the proper morphogenetic development of the vertebrate heart, and its misregulation has been implicated in human congenital heart disease. Although it is established that Tbx20 exerts its function in the embryonic heart through positive and negative regulation of distinct gene programs, it is unclear how Tbx20 mediates proper transcriptional regulation of its target genes. Here, using a combinatorial proteomic and bioinformatic approach, we present the first characterization of Tbx20 transcriptional protein complexes. We have systematically investigated Tbx20 protein-protein interactions by immunoaffinity purification of tagged Tbx20 followed by proteomic analysis using GeLC-MS/MS, gene ontology classification, and functional network analysis. We demonstrate that Tbx20 is associated with a chromatin remodeling network composed of TLE/Groucho co-repressors, members of the Nucleosome Remodeling and Deacetylase (NuRD) complex, the chromatin remodeling ATPases RUVBL1/RUVBL2, and the T-box repressor Tbx18. We determined that the interaction with TLE co-repressors is mediated via an eh1 binding motif in Tbx20. Moreover, we demonstrated that ablation of this motif results in a failure to properly assemble the repression network and disrupts Tbx20 function in vivo. Importantly, we validated Tbx20-TLE interactions in the mouse embryonic heart, and identified developmental genes regulated by Tbx20:TLE binding, thereby confirming a primary role for a Tbx20-TLE repressor complex in embryonic heart development. Together, these studies suggest a model in which Tbx20 associates with a Gro/TLE-NuRD repressor complex to prevent inappropriate gene activation within the forming heart

    Effects of Allergen Sensitization on Response to Therapy in Children with Eosinophilic Esophagitis

    Get PDF
    Background: In children with eosinophilic esophagitis (EoE) foods are the most common disease triggers, but environmental allergens are also suspected culprits. Objective: To determine the effects of environmental allergen sensitization on response to treatment in children with EoE in the southeastern United States. Methods: Patients 2 to 18 years old who were referred to the Arkansas Children’s Hospital Eosinophilic Gastrointestinal Disorders Clinic from January 2012 to January 2016 were enrolled in a prospective, longitudinal cohort study with collection of demographics, clinical symptoms, medical history, allergy sensitization profiles, and response to treatment over time. Comparisons were made between complete responders (peak esophageal eosinophil count \u3c 15 per high-power field [HPF]) and nonresponders (\u3e 25 eosinophils per HPF) after treatment with diet elimination alone, swallowed corticosteroids alone, or diet elimination and swallowed corticosteroids. Sensitization patterns to environmental allergens found in the southeastern United States were analyzed for the effect on treatment response. Results: A total of 223 individuals were enrolled. Of these, 182 had environmental allergy profiling and at least one endoscopy while receiving proton pump inhibitor (PPI) therapy. Twenty-nine individuals had PPI-responsive EoE and were excluded from further analysis, leaving 123 individuals with none-PPI-responsive EoE who were further analyzed; 72 (58.5%) were complete responders and 33 (26.8%) were nonresponders. Seventeen individuals (13.8%) were partial responders (≥ 1 but ≤ 25 eosinophils per HPF) and excluded from further analysis. Nonresponders were more likely to be sensitized to perennial allergens (P = .02). There was no significant difference in response based on seasonal allergen sensitization. Individuals with mold or cockroach sensitization were more likely to fail combination diet and swallowed corticosteroid treatment (P = .02 and P = .002). Conclusion: Perennial allergen and mold sensitization may lead to nonresponse to EoE treatment in some patients. Additional studies are needed to further understand the effect of environmental allergens on EoE

    Parent Attitudes of Student Outcomes of Choose Love Enrichment Program

    Get PDF
    The Choose Love Enrichment Program (CLEP) is a social and emotional learning program that is designed to teach and promote the development of character values such as courage, gratitude, forgiveness, and compassion. This program has been integrated into schools with the aim of improving school environments. For the present study, the CLEP was implemented with students, grades 4 through 12, across a number of school districts in East Texas. Parents completed the Strengths and Difficulties Questionnaire, a 25-item informant report assessing various components of their child\u27s behavior, both before and after their child participated in the CLEP. Paired t-tests were used to examine differences between pre- and post-scores. Parents reported a significant increase in overall prosocial behavior in their children after completion of the curriculum. This suggests that parents noticed a positive change in their children, and that this program may promote prosocial behavior among school children in East Texas

    Androgen ablation mitigates tolerance to a prostate/prostate cancer-restricted antigen

    Get PDF
    SummaryTo understand the T cell response to prostate cancer, we created transgenic mice that express a model antigen in a prostate-restricted pattern and crossed these animals to TRAMP mice that develop spontaneous prostate cancer. Adoptive transfer of prostate-specific CD4 T cells shows that, in the absence of prostate cancer, the prostate gland is mostly ignored. Tumorigenesis allows T cell recognition of the prostate gland—but this recognition is tolerogenic, resulting in abortive proliferation and ultimately in hyporesponsiveness at the systemic level. Androgen ablation (the most common treatment for metastatic prostate cancer) was able to mitigate this tolerance—allowing prostate-specific T cells to expand and develop effector function after vaccination. These results suggest that immunotherapy for prostate cancer may be most efficacious when administered after androgen ablation
    corecore