10 research outputs found

    CO carbonylation and first evaluation as a P-gp tracer in rats

    Get PDF
    BACKGROUND: At present, several positron emission tomography (PET) tracers are in use for imaging P-glycoprotein (P-gp) function in man. At baseline, substrate tracers such as R-[(11)C]verapamil display low brain concentrations with a distribution volume of around 1. [(11)C]phenytoin is supposed to be a weaker P-gp substrate, which may lead to higher brain concentrations at baseline. This could facilitate assessment of P-gp function when P-gp is upregulated. The purpose of this study was to synthesize [(11)C]phenytoin and to characterize its properties as a P-gp tracer. METHODS: [(11)C]CO was used to synthesize [(11)C]phenytoin by rhodium-mediated carbonylation. Metabolism and, using PET, brain pharmacokinetics of [(11)C]phenytoin were studied in rats. Effects of P-gp function on [(11)C]phenytoin uptake were assessed using predosing with tariquidar. RESULTS: [(11)C]phenytoin was synthesized via [(11)C]CO in an overall decay-corrected yield of 22 ± 4%. At 45 min after administration, 19% and 83% of radioactivity represented intact [(11)C]phenytoin in the plasma and brain, respectively. Compared with baseline, tariquidar predosing resulted in a 45% increase in the cerebral distribution volume of [(11)C]phenytoin. CONCLUSIONS: Using [(11)C]CO, the radiosynthesis of [(11)C]phenytoin could be improved. [(11)C]phenytoin appeared to be a rather weak P-gp substrate

    Blood-brain barrier P-glycoprotein function in healthy subjects and Alzheimer's disease patients: effect of polymorphisms in the ABCB1 gene

    Get PDF
    Background: P-glycoprotein is a blood-brain barrier efflux transporter involved in the clearance of amyloid-beta from the brain and, as such, might be involved in the pathogenesis of Alzheimer's disease. P-glycoprotein is encoded by the highly polymorphic ABCB1 gene. Single-nucleotide polymorphisms in the ABCB1 gene have been associated with altered P-glycoprotein expression and function. P-glycoprotein function at the blood-brain barrier can be quantified in vivo using the P-glycoprotein substrate tracer (R)-[11C]verapamil and positron emission tomography (PET). The purpose of this study was to assess the effects of C1236T, G2677T/A and C3435T single-nucleotide polymorphisms in ABCB1 on blood-brain barrier P-glycoprotein function in healthy subjects and patients with Alzheimer's disease. Methods: Thirty-two healthy subjects and seventeen patients with Alzheimer's disease underwent 60-min dynamic (R)-[11C]verapamil PET scans. The binding potential of (R)-[11C]verapamil was assessed using a previously validated constrained two-tissue plasma input compartment model and used as outcome measure. DNA was isolated from frozen blood samples and C1236T, G2677T/A and C3435T single-nucleotide polymorphisms were amplified by polymerase chain reaction. Results: In healthy controls, binding potential did not differ between subjects without and with one or more T present in C1236T, G2677T and C3435T. In contrast, patients with Alzheimer's disease with one or more T in C1236T, G2677T and C3435T had significantly higher binding potential values than patients without a T. In addition, there was a relationship between binding potential and T dose in C1236T and G2677T. Conclusions: In Alzheimer's disease patients, C1236T, G2677T/A and C3435T single-nucleotide polymorphisms may be related to changes in P-glycoprotein function at the blood-brain barrier. As such, genetic variations in ABCB1 might contribute to the progression of amyloid-beta deposition in the brain

    Radiation Dose of the P-Glycoprotein Tracer C-11-Laniquidar

    No full text
    Resistance to current drug therapy is an important issue in the treatment of epilepsy. Inadequate access of central nervous system drugs to their targets in the brain may be caused by overexpression or overactivity of multidrug transporters, such as P-glycoprotein (P-gp), at the blood-brain barrier. Laniquidar, an inhibitor of P-gp, has been labeled wit
    corecore