14,820 research outputs found

    Permanent-magnet atom chips for the study of long, thin atom clouds

    Get PDF
    Atom-chip technology can be used to confine atoms tightly using permanently magnetised videotape along with external magnetic fields. The one-dimensional (1D) gas regime can be realised and studied by trapping the atoms in high-aspect-ratio traps in which the radial motion of the system is confined to zero-point oscillation

    Computer-aided learning and use of the internet

    Get PDF

    Vortices in fermion droplets with repulsive dipole-dipole interactions

    Full text link
    Vortices are found in a fermion system with repulsive dipole-dipole interactions, trapped by a rotating quasi-two-dimensional harmonic oscillator potential. Such systems have much in common with electrons in quantum dots, where rotation is induced via an external magnetic field. In contrast to the Coulomb interactions between electrons, the (externally tunable) anisotropy of the dipole-dipole interaction breaks the rotational symmetry of the Hamiltonian. This may cause the otherwise rotationally symmetric exact wavefunction to reveal its internal structure more directly.Comment: 5 pages, 5 figure

    Asymmetric magnetic reconnection with a flow shear and applications to the magnetopause

    Get PDF
    We perform a theoretical and numerical study of anti-parallel 2D magnetic reconnection with asymmetries in the density and reconnecting magnetic field strength in addition to a bulk flow shear across the reconnection site in the plane of the reconnecting fields, which commonly occurs at planetary magnetospheres. We predict the speed at which an isolated X-line is convected by the flow, the reconnection rate, and the critical flow speed at which reconnection no longer takes place for arbitrary reconnecting magnetic field strengths, densities, and upstream flow speeds, and confirm the results with two-fluid numerical simulations. The predictions and simulation results counter the prevailing model of reconnection at Earth's dayside magnetopause which says reconnection occurs with a stationary X-line for sub-Alfvenic magnetosheath flow, reconnection occurs but the X-line convects for magnetosheath flows between the Alfven speed and double the Alfven speed, and reconnection does not occur for magnetosheath flows greater than double the Alfven speed. We find that X-line motion is governed by momentum conservation from the upstream flows, which are weighted differently in asymmetric systems, so the X-line convects for generic conditions including sub-Alfvenic upstream speeds. For the reconnection rate, while the cutoff condition for symmetric reconnection is that the difference in flows on the two sides of the reconnection site is twice the Alfven speed, we find asymmetries cause the cutoff speed for asymmetric reconnection to be higher than twice the asymmetric form of the Alfven speed. The results compare favorably with an observation of reconnection at Earth's polar cusps during a period of northward interplanetary magnetic field, where reconnection occurs despite the magnetosheath flow speed being more than twice the magnetosheath Alfven speed, the previously proposed suppression condition.Comment: 46 pages, 7 figures, abstract abridged here, accepted to Journal of Geophysical Research - Space Physic

    The effect of multiple paternity on genetic diversity during and after colonisation

    Get PDF
    In metapopulations, genetic variation of local populations is influenced by the genetic content of the founders, and of migrants following establishment. We analyse the effect of multiple paternity on genetic diversity using a model in which the highly promiscuous marine snail Littorina saxatilis expands from a mainland to colonise initially empty islands of an archipelago. Migrant females carry a large number of eggs fertilised by 1 - 10 mates. We quantify the genetic diversity of the population in terms of its heterozygosity: initially during the transient colonisation process, and at long times when the population has reached an equilibrium state with migration. During colonisation, multiple paternity increases the heterozygosity by 10 - 300 % in comparison with the case of single paternity. The equilibrium state, by contrast, is less strongly affected: multiple paternity gives rise to 10 - 50 % higher heterozygosity compared with single paternity. Further we find that far from the mainland, new mutations spreading from the mainland cause bursts of high genetic diversity separated by long periods of low diversity. This effect is boosted by multiple paternity. We conclude that multiple paternity facilitates colonisation and maintenance of small populations, whether or not this is the main cause for the evolution of extreme promiscuity in Littorina saxatilis.Comment: 7 pages, 5 figures, electronic supplementary materia

    Cold atoms in videotape micro-traps

    Full text link
    We describe an array of microscopic atom traps formed by a pattern of magnetisation on a piece of videotape. We describe the way in which cold atoms are loaded into one of these micro-traps and how the trapped atom cloud is used to explore the properties of the trap. Evaporative cooling in the micro-trap down to a temperature of 1 microkelvin allows us to probe the smoothness of the trapping potential and reveals some inhomogeneity produced by the magnetic film. We discuss future prospects for atom chips based on microscopic permanent-magnet structures.Comment: Submitted for EPJD topical issue "Atom chips: manipulating atoms and molecules with microfabricated structures

    A three-dimensional electrostatic actuator with a locking mechanism for a new generation of atom chips

    No full text
    A micromachined three-dimensional electrostatic actuator that is optimized for aligning and tuning optical microcavities on atom chips is presented. The design of the 3D actuator is outlined in detail, and its characteristics are verified by analytical calculations and finite element modelling. Furthermore, the fabrication process of the actuation device is described and preliminary fabrication results are shown. The actuation in the chip plane which is used for mirror positioning has a working envelope of 17.5 ?m. The design incorporates a unique locking mechanism which allows the out-of-plane actuation that is used for cavity tuning to be carried out once the in-plane actuation is completed. A maximum translation of 7 ?m can be achieved in the out-of-plane direction
    corecore