21 research outputs found

    Horizontal spin of ratchet motor by vertical agitation

    No full text
    Abstract The horizontal spin of a ratchet motor by vertical vibration is reported. A macroscopic ratchet gear is placed on a granular bed, where nearly half of the gear is penetrated in the bed. The gear and granular bed are mechanically vibrated. The gear shows a random motion or one-way spin that depend on the diameter of the granules, vibration frequency, and degree of vertical motion allowed for the gear. Even when one-way spin is observed, the spin direction depends on the abovementioned factors. Although the dependency is complicated, it is deterministic because the motion or flows of granular matter determines it. The characteristics observed in the experiments are explained by a simple model that accounts for the statistical variance in the motion of the granular matter. Extraction of systematic motion from small and non-useful motions such as mechanical agitation will be developed into energy harvest technology and may facilitate the science of a spontaneously moving system in a uniform potential field

    Self-Organized Micro-Spiral of Single-Walled Carbon Nanotubes

    Get PDF
    Single-walled carbon nanotubes (SWCNTs) are reported to spontaneously align in a rotational pattern by drying a liquid droplet of toluene containing polyfluorene as a dispersant. By situating a droplet of an SWCNT solution around a glass bead, spiral patterns are generated. The parallel alignment of SWCNTs along one stripe of such a pattern is confirmed using scanning electron microscopy and polarized optical microscopy. The orientation order increases toward the outer edge of a stripe. The stripe width in the pattern is proportional to the solute concentration, and the width and position of the stripes follow geometric sequences. The growth of the rotational pattern is also observed in real time. The process of spiral pattern formation is visualized, indicating the role of the annihilation of counter-traveling accompanied by continuous depinning. The geometric sequences for the stripe width and position are explained by the near-constant traveling speed and solute enrichment at the droplet periphery

    Fusobacterium nucleatum infection correlates with two types of microsatellite alterations in colorectal cancer and triggers DNA damage

    Full text link
    Abstract Fusobacterium nucleatum (Fn) is frequently found in colorectal cancers (CRCs). High loads of Fn DNA are detected in CRC tissues with microsatellite instability-high (MSI-H), or with the CpG island hypermethylation phenotype (CIMP). Fn infection is also associated with the inflammatory tumor microenvironment of CRC. A subtype of CRC exhibits inflammation-associated microsatellite alterations (IAMA), which are characterized by microsatellite instability-low (MSI-L) and/or an elevated level of microsatellite alterations at selected tetra-nucleotide repeats (EMAST). Here we describe two independent CRC cohorts in which heavy or moderate loads of Fn DNA are associated with MSI-H and L/E CRC respectively. We also show evidence that Fn produces factors that induce γ-H2AX, a hallmark of DNA double strand breaks (DSBs), in the infected cells.http://deepblue.lib.umich.edu/bitstream/2027.42/173691/1/13099_2020_Article_384.pd
    corecore