69 research outputs found

    Purification, crystallization and preliminary X-ray analysis of a fusion of the LIM domains of LMO2 and the LID domain of Ldb1

    Get PDF
    LMO2 (LIM domain only 2), also known as rhombotin-2, is a transcriptional regulator that is essential for normal haematopoietic development. In malignant haematopoiesis, its ectopic expression in T cells is involved in the pathogenesis of leukaemia. LMO2 contains four zinc-finger domains and binds to the ubiquitous nuclear adaptor protein Ldb1 via the LIM-interaction domain (LID). Together, they act as scaffolding proteins and bridge important haematopoietic transcription factors such as SCL/Tal1, E2A and GATA-1. Solving the structure of the LMO2:Ldb1-LID complex would therefore be a first step towards understanding how haematopoietic specific protein complexes form and would also provide an attractive target for drug development in anticancer therapy, especially for T-cell leukaemia. Here, the expression, purification, crystallization and data collection of a fusion protein consisting of the two LIM domains of LMO2 linked to the LID domain of Ldb1 via a flexible linker is reported. The crystals belonged to space group C2, with unit-cell parameters a = 179.9, b = 51.5, c = 114.7β€…Γ…, Ξ² = 90.1Β°, and contained five molecules in the asymmetric unit. Multiple-wavelength anomalous dispersion (MAD) data have been collected at the zinc X-ray absorption edge to a resolution of 2.8β€…Γ… and the data were used to solve the structure of the LMO2:Ldb1-LID complex. Refinement and analysis of the electron-density map is in progress

    The histone H3K4 demethylase JARID1A directly interacts with haematopoietic transcription factor GATA1 in erythroid cells through its second PHD domain

    Get PDF
    Chromatin remodelling and transcription factors play important roles in lineage commitment and development through control of gene expression. Activation of selected lineage-specific genes and repression of alternative lineage-affiliated genes results in tightly regulated cell differentiation transcriptional programmes. However, the complex functional and physical interplay between transcription factors and chromatin modifying enzymes remains elusive. Recent evidence has implicated histone demethylases in normal haematopoietic differentiation as well as in malignant haematopoiesis. Here we report an interaction between H3K4 demethylase JARID1A and the haematopoietic-specific master transcription proteins SCL and GATA1 in red blood cells. Specifically, we observe a direct physical contact between GATA1 and the second PHD domain of JARID1A. This interaction has potential implications for normal and malignant haematopoiesis

    RNA packaging motor: From structure to quantum mechanical modelling and sequential-stochastic mechanism

    Get PDF
    The bacteriophages of the Cystoviridae family package their single stranded RNA genomic precursors into empty capsid (procapsids) using a hexameric packaging ATPase motor (P4). This molecular motor shares sequence and structural similarity with RecA-like hexameric helicases. A concerted structural, mutational and kinetic analysis helped to define the mechanical reaction coordinate, i.e. the conformational changes associated with RNA translocation. The results also allowed us to propose a possible scheme of coupling between ATP hydrolysis and translocation which requires the cooperative action of three consecutive subunits. Here, we first test this model by preparing hexamers with defined proportions of wild type and mutant subunits and measuring their activity. Then, we develop a stochastic kinetic model which accounts for the catalytic cooperativity of the P4 hexamer. Finally, we use the available structural information to construct a quantum-chemical model of the chemical reaction coordinate and obtain a detailed description of the electron density changes during ATP hydrolysis. The model explains the results of the mutational analyses and yields new insights into the role of several conserved residues within the ATP binding pocket. These hypotheses will guide future experimental work

    Small molecule inhibits T-cell acute lymphoblastic leukaemia oncogenic interaction through conformational modulation of LMO2

    Get PDF
    Ectopic expression in T-cell precursors of LIM only protein 2 (LMO2), a key factor in hematopoietic development, has been linked to the onset of T-cell acute lymphoblastic leukaemia (T-ALL). In the T-ALL context, LMO2 drives oncogenic progression through binding to erythroid-specific transcription factor SCL/TAL1 and sequestration of E-protein transcription factors, normally required for T-cell differentiation. A key requirement for the formation of this oncogenic protein-protein interaction (PPI) is the conformational flexibility of LMO2. Here we identify a small molecule inhibitor of the SCL-LMO2 PPI, which hinders the interaction in vitro through direct binding to LMO2. Biophysical analysis demonstrates that this inhibitor acts through a mechanism of conformational modulation of LMO2. Importantly, this work has led to the identification of a small molecule inhibitor of the SCL-LMO2 PPI, which can provide a starting point for the development of new agents for the treatment of T-ALL. These results suggest that similar approaches, based on the modulation of protein conformation by small molecules, might be used for therapeutic targeting of other oncogenic PPIs

    1H, 13C, and 15N resonance assignments for the tandem PHD finger motifs of human CHD4

    Get PDF
    The plant homeodomain (PHD) zinc finger is a structural motif of about 40–60 amino acid residues found in many eukaryotic proteins that are involved in chromatin-mediated gene regulation. The human chromodomain helicase DNA binding protein 4 (CHD4) is a multi-domain protein that harbours, at its N-terminal end, a pair of PHD finger motifs (dPHD) connected by a ~30 amino acid linker. This tandem PHD motif is thought to be involved in targeting CHD4 to chromatin via its interaction with histone tails. Here we report the 1H, 13C and 15N backbone and side-chain resonance assignment of the entire dPHD by heteronuclear multidimensional NMR spectroscopy. These assignments provide the starting point for the determination of the structure, dynamics and histone-binding properties of this tandem domain pair

    Phosphorus and sulfur SAD phasing of the nucleic acid-bound DNA-binding domain of interferon regulatory factor 4

    Get PDF
    Pivotal to the regulation of key cellular processes such as the transcription, replication and repair of DNA, DNA-binding proteins play vital roles in all aspects of genetic activity. The determination of high-quality structures of DNA-binding proteins, particularly those in complexes with DNA, provides crucial insights into the understanding of these processes. The presence in such complexes of phosphate-rich oligonucleotides offers the choice of a rapid method for the routine solution of DNA-binding proteins through the use of long-wavelength beamlines such as I23 at Diamond Light Source. This article reports the use of native intrinsic phosphorus and sulfur single-wavelength anomalous dispersion methods to solve the complex of the DNA-binding domain (DBD) of interferon regulatory factor 4 (IRF4) bound to its interferon-stimulated response element (ISRE). The structure unexpectedly shows three molecules of the IRF4 DBD bound to one ISRE. The sole reliance on native intrinsic anomalous scattering elements that belong to DNA-protein complexes renders the method of general applicability to a large number of such protein complexes that cannot be solved by molecular replacement or by other phasing methods

    RNA packaging motor: From structure to quantum mechanical modelling and sequential-stochastic mechanism

    Get PDF
    The bacteriophages of the Cystoviridae family package their single stranded RNA genomic precursors into empty capsid (procapsids) using a hexameric packaging ATPase motor (P4). This molecular motor shares sequence and structural similarity with RecA-like hexameric helicases. A concerted structural, mutational and kinetic analysis helped to define the mechanical reaction coordinate, i.e. the conformational changes associated with RNA translocation. The results also allowed us to propose a possible scheme of coupling between ATP hydrolysis and translocation which requires the cooperative action of three consecutive subunits. Here, we first test this model by preparing hexamers with defined proportions of wild type and mutant subunits and measuring their activity. Then, we develop a stochastic kinetic model which accounts for the catalytic cooperativity of the P4 hexamer. Finally, we use the available structural information to construct a quantum-chemical model of the chemical reaction coordinate and obtain a detailed description of the electron density changes during ATP hydrolysis. The model explains the results of the mutational analyses and yields new insights into the role of several conserved residues within the ATP binding pocket. These hypotheses will guide future experimental work

    Mechanism of activation of the BNLF2a immune evasion gene of Epstein-Barr virus by Zta

    Get PDF
    The human gamma herpes virus Epstein–Barr virus (EBV) exploits multiple routes to evade the cellular immune response. During the EBV lytic replication cycle, viral proteins are expressed that provide excellent targets for recognition by cytotoxic T cells. This is countered by the viral BNLF2a gene. In B cells during latency, where BNLF2a is not expressed, we show that its regulatory region is embedded in repressive chromatin. The expression of BNLF2a mirrors the expression of a viral lytic cycle transcriptional regulator, Zta (BZLF1, EB1, ZEBRA), in B cells and we propose that Zta plays a role in up-regulating BNLF2a. In cells undergoing EBV lytic replication, we identified two distinct regions of interaction of Zta with the chromatin-associated BNLF2a promoter. We identify five potential Zta-response elements (ZREs) in the promoter that are highly conserved between virus isolates. Zta binds to these elements in vitro and activates the expression of the BNLF2a promoter in both epithelial and B cells. We also found redundancy amongst the ZREs. The EBV genome undergoes a biphasic DNA methylation cycle during its infection cycle. One of the ZREs contains an integral CpG motif. We show that this can be DNA methylated during EBV latency and that both Zta binding and promoter activation are enhanced by its methylation. In summary, we find that the BNLF2a promoter is directly targeted by Zta and that DNA methylation within the proximal ZRE aids activation. The implications for regulation of this key viral gene during the reactivation of EBV from latency are discussed

    Dissecting the impact of bromodomain inhibitors on the IRF4-MYC oncogenic axis in multiple myeloma

    Get PDF
    B-cell progenitor fate determinant interferon regulatory factor 4 (IRF4) exerts key roles in the pathogenesis and progression of multiple myeloma (MM), a currently incurable plasma cell malignancy. Aberrant expression of IRF4 and the establishment of a positive auto-regulatory loop with oncogene MYC, drives a MM specific gene-expression programme leading to the abnormal expansion of malignant immature plasma cells. Targeting the IRF4-MYC oncogenic loop has the potential to provide a selective and effective therapy for MM. Here we evaluate the use of bromodomain inhibitors to target the IRF4-MYC axis through combined inhibition of their known epigenetic regulators, BRD4 and CBP/EP300. Although all inhibitors induced cell death, we found no synergistic effect of targeting both of these regulators on the viability of MM cell-lines. Importantly, for all inhibitors over a time period up to 72 hours, we detected reduced IRF4 mRNA, but a limited decrease in IRF4 protein expression or mRNA levels of downstream target genes. This indicates that inhibitor-induced loss of cell viability is not mediated through reduced IRF4 protein expression, as previously proposed. Further analysis revealed a long half-life of IRF4 protein in MM cells. In support of our experimental observations, gene network modelling of MM suggests that bromodomain inhibition is exerted primarily through MYC and not IRF4. These findings suggest that despite the autofeedback positive regulatory loop between IRF4 and MYC, bromodomain inhibitors are not effective at targeting IRF4 in MM and that novel therapeutic strategies should focus on the direct inhibition or degradation of IRF4. This article is protected by copyright
    • …
    corecore