4,089 research outputs found
Recommended from our members
Essential Oil Yield and Aromatic Profile of Lemon Catnip and Lemon-Scented Catnip Selections at Different Harvesting Times
All-Optical Ultrafast Control and Read-Out of a Single Negatively Charged Self-Assembled InAs Quantum Dot
We demonstrate the all-optical ultrafast manipulation and read-out of optical
transitions in a single negatively charged self-assembled InAs quantum dot, an
important step towards ultrafast control of the resident spin. Experiments
performed at zero magnetic field show the excitation and decay of the trion
(negatively charged exciton) as well as Rabi oscillations between the electron
and trion states. Application of a DC magnetic field perpendicular to the
growth axis of the dot enables observation of a complex quantum beat structure
produced by independent precession of the ground state electron and the excited
state heavy hole spins
Structural Analysis of Test Flight Vehicles with Multifunctional Energy Storage
Under the NASA Aeronautics Research Mission Directorate (ARMD) Convergent Aeronautical Solutions (CAS) project, NASA Glenn Research Center has been leading Multifunctional Structures for High Energy Lightweight Load-bearing Storage (M-SHELLS) research efforts. The technology of integrating load-carrying structures with electrical energy storage capacity has the potential to reduce the overall weight of future electric aircraft. The proposed project goals were to develop M-SHELLS in the form of honeycomb coupons and subcomponents, integrate them into the structure, and conduct low-risk flight tests onboard a remotely piloted small aircraft. Experimental M-SHELLS energy-storing coupons were fabricated and tested in the laboratory for their electrical and mechanical properties. In this paper, finite element model development and structural analyses of two small test aircraft candidates are presented. The finite element analysis of the initial two-spar wing is described for strain, deflection, and weight estimation. After a test aircraft Tempest was acquired, a load- deflection test of the wing was conducted. A finite element model of the Tempest was then developed based on the test aircraft dimensions and construction detail. The component weight analysis from the finite element model and test measurements were correlated. Structural analysis results with multifunctional energy storage panels in the fuselage of the test vehicle are presented. Although the flight test was cancelled because of programmatic reasons and time constraints, the structural analysis results indicate that the mid-fuselage floor composite panel could provide structural integrity with minimal weight penalty while supplying electrical energy. To explore potential future applications of the multifunctional structure, analyses of the NASA X-57 Maxwell electric aircraft and a NASA N+3 Technology Conventional Configuration (N3CC) fuselage are presented. Secondary aluminum structure in the fuselage sub-floor and cargo area were partially replaced with reinforced five-layer composite panels with M-SHELLS honeycomb core. The N3CC fuselage weight reduction associated with each design without risking structural integrity are described. The structural analysis and weight estimation with the application of composite M-SHELLS panels to the N3CC fuselage indicate a 3.2% reduction in the fuselage structural weight, prior to accounting for the additional weight of core material required to complete the energy storage functionality
Delivering Live Multimedia Streams to Mobile Hosts in a Wireless Internet with Multiple Content Aggregators
We consider the distribution of channels of live multimedia content (e.g., radio or TV broadcasts) via multiple content aggregators. In our work, an aggregator receives channels from content sources and redistributes them to a potentially large number of mobile hosts. Each aggregator can offer a channel in various configurations to cater for different wireless links, mobile hosts, and user preferences. As a result, a mobile host can generally choose from different configurations of the same channel offered by multiple alternative aggregators, which may be available through different interfaces (e.g., in a hotspot). A mobile host may need to handoff to another aggregator once it receives a channel. To prevent service disruption, a mobile host may for instance need to handoff to another aggregator when it leaves the subnets that make up its current aggregator�s service area (e.g., a hotspot or a cellular network).\ud
In this paper, we present the design of a system that enables (multi-homed) mobile hosts to seamlessly handoff from one aggregator to another so that they can continue to receive a channel wherever they go. We concentrate on handoffs between aggregators as a result of a mobile host crossing a subnet boundary. As part of the system, we discuss a lightweight application-level protocol that enables mobile hosts to select the aggregator that provides the �best� configuration of a channel. The protocol comes into play when a mobile host begins to receive a channel and when it crosses a subnet boundary while receiving the channel. We show how our protocol can be implemented using the standard IETF session control and description protocols SIP and SDP. The implementation combines SIP and SDP�s offer-answer model in a novel way
Recommended from our members
Elucidating Reversible Electrochemical Redox of Li6PS5CI Solid Electrolyte
Recommended from our members
Revealing Nanoscale Solid-Solid Interfacial Phenomena for Long-Life and High-Energy All-Solid-State Batteries.
Enabling long cyclability of high-voltage oxide cathodes is a persistent challenge for all-solid-state batteries, largely because of their poor interfacial stabilities against sulfide solid electrolytes. While protective oxide coating layers such as LiNbO3 (LNO) have been proposed, its precise working mechanisms are still not fully understood. Existing literature attributes reductions in interfacial impedance growth to the coating's ability to prevent interfacial reactions. However, its true nature is more complex, with cathode interfacial reactions and electrolyte electrochemical decomposition occurring simultaneously, making it difficult to decouple each effect. Herein, we utilized various advanced characterization tools and first-principles calculations to probe the interfacial phenomenon between solid electrolyte Li6PS5Cl (LPSCl) and high-voltage cathode LiNi0.85Co0.1Al0.05O2 (NCA). We segregated the effects of spontaneous reaction between LPSCl and NCA at the interface and quantified the intrinsic electrochemical decomposition of LPSCl during cell cycling. Both experimental and computational results demonstrated improved thermodynamic stability between NCA and LPSCl after incorporation of the LNO coating. Additionally, we revealed the in situ passivation effect of LPSCl electrochemical decomposition. When combined, both these phenomena occurring at the first charge cycle result in a stabilized interface, enabling long cyclability of all-solid-state batteries
Rejection-free Geometric Cluster Algorithm for Complex Fluids
We present a novel, generally applicable Monte Carlo algorithm for the
simulation of fluid systems. Geometric transformations are used to identify
clusters of particles in such a manner that every cluster move is accepted,
irrespective of the nature of the pair interactions. The rejection-free and
non-local nature of the algorithm make it particularly suitable for the
efficient simulation of complex fluids with components of widely varying size,
such as colloidal mixtures. Compared to conventional simulation algorithms,
typical efficiency improvements amount to several orders of magnitude
Changes in Thermodynamic Stability of von Willebrand Factor Differentially Affect the Force-Dependent Binding to Platelet GPIbα
AbstractIn circulation, plasma glycoprotein von Willebrand Factor plays an important role in hemostasis and in pathological thrombosis under hydrodynamic forces. Mutations in the A1 domain of von Willebrand factor cause the hereditary types 2B and 2M von Willebrand disease that either enhance (2B) or inhibit (2M) the interaction of von Willebrand factor with the platelet receptor glycoprotein Ibα. To understand how type 2B and 2M mutations cause clinically opposite phenotypes, we use a combination of protein unfolding thermodynamics and atomic force microscopy to assess the effects of two type 2B mutations (R1306Q and I1309V) and a type 2M mutation (G1324S) on the conformational stability of the A1 domain and the single bond dissociation kinetics of the A1-GPIbα interaction. At physiological temperature, the type 2B mutations destabilize the structure of the A1 domain and shift the A1-GPIbα catch to slip bonding to lower forces. Conversely, the type 2M mutation stabilizes the structure of the A1 domain and shifts the A1-GPIbα catch to slip bonding to higher forces. As a function of increasing A1 domain stability, the bond lifetime at low force decreases and the critical force required for maximal bond lifetime increases. Our results are able to distinguish the clinical phenotypes of these naturally occurring mutations from a thermodynamic and biophysical perspective that provides a quantitative description of the allosteric coupling of A1 conformational stability with the force dependent catch to slip bonding between A1 and GPIbα
The structure of intermetallic carbonitrides on the surface of porous biocompatible titanium nickelide obtained by the SHS method
The surface layers and fracture surfaces of porous titanium nickelide obtained by self-propagating high temperature synthesis (SHS) in a flow reactor in an argon atmosphere are studied by SEM and energy dispersive analysis. It is alleged that primary pores 5-15 µ in size and the related granular layer are formed due to segregation and capillary force effect during peritectic crystallization of some porous alloy areas. Carbon and oxygen impurities present in the reaction gases and the protective atmosphere penetrate into the melt film on the pore surface to form strong and corrosion-resistant nanostructured layers of intermetallic carbides, nitrides and oxides
Recommended from our members
Analysis of human errors in human-autonomy collaboration in autonomous ships operations through shore control experimental data
- …