2,192 research outputs found
Chiral Dynamics of Deeply Bound Pionic Atoms
We present and discuss a systematic calculation, based on two-loop chiral
perturbation theory, of the pion-nuclear s-wave optical potential. A proper
treatment of the explicit energy dependence of the off-shell pion self-energy
together with (electromagnetic) gauge invariance of the Klein-Gordon equation
turns out to be crucial. Accurate data for the binding energies and widths of
the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and
the notorious "missing repulsion" in the pion-nuclear s-wave optical potential
is accounted for. The connection with the in-medium change of the pion decay
constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure
Hyperon production in near threshold nucleon-nucleon collisions
We study the mechanism of the associated Lambda-kaon and Sigma-kaon
production in nucleon-nucleon collisions over an extended range of near
threshold beam energies within an effective Lagrangian model, to understand of
the new data on pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions published
recently by the COSY-11 collaboration. In this theory, the hyperon production
proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic
resonances. Interplay of the relative contributions of various resonances to
the cross sections, is discussed as a function of the beam energy over a larger
near threshold energy domain. Predictions of our model are given for the total
cross sections of pp --> p Sigma+K0, pp --> n Sigma+K+, and pn --> n Lambda K+
reactions.Comment: 16 pages, 4 figures, one new table added and dicussions are updated,
version accepted for publication by Physical Review
Feynman diagrams with the effective action
A derivation is given of the Feynman rules to be used in the perturbative
computation of the Green's functions of a generic quantum many-body theory when
the action which is being perturbed is not necessarily quadratic. Some
applications are discussed.Comment: Extended revised version. RevTex, 19 pages, 10 figure
Charged Current Neutrino Nucleus Interactions at Intermediate Energies
We have developed a model to describe the interactions of neutrinos with
nucleons and nuclei, focusing on the region of the quasielastic and Delta(1232)
peaks. We describe neutrino nucleon collisions with a fully relativistic
formalism which incorporates state-of-the-art parametrizations of the form
factors for both the nucleon and the N-Delta transition. The model has then
been extended to finite nuclei, taking into account nuclear effects such as
Fermi motion, Pauli blocking (both within the local density approximation),
nuclear binding and final state interactions. The in-medium modification of the
Delta resonance due to Pauli blocking and collisional broadening have also been
included. Final state interactions are implemented by means of the
Boltzmann-Uehling-Uhlenbeck (BUU) coupled-channel transport model. Results for
charged current inclusive cross sections and exclusive channels as pion
production and nucleon knockout are presented and discussed.Comment: 26 pages, 24 figures; v2: 2 figures and discussion added, version
accepted for publication in Phys. Rev.
NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration
The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg
Influence of the pion-nucleon interaction on the collective pion flow in heavy ion reactions
We investigate the influence of the real part of the in-medium pion optical
potential on the pion dynamics in intermediate energy heavy ion reactions at 1
GeV/A. For different models, i.e. a phenomenological model and the
--hole model, a pionic potential is extracted from the dispersion
relation and used in Quantum Molecular Dynamics calculations. In addition with
the inelastic scattering processes we thus take care of both, real and
imaginary part of the pion optical potential. A strong influence of the real
pionic potential on the pion in-plane flow is observed. In general such a
potential has the tendency to reduce the anticorrelation of pion and nucleon
flow in non-central collisions.Comment: 12 pages Latex, 4 PS-figure
Level rearrangement in exotic atoms and quantum dots
A presentation and a generalisation are given of the phenomenon of level
rearrangement, which occurs when an attractive long-range potential is
supplemented by a short-range attractive potential of increasing strength. This
problem has been discovered in condensate-matter physics and has also been
studied in the physics of exotic atoms. A similar phenomenon occurs in a
situation inspired by quantum dots, where a short-range interaction is added to
an harmonic confinement.Comment: 12 pages, 11 figures, RevTeX
Chaotic Scattering in the Regime of Weakly Overlapping Resonances
We measure the transmission and reflection amplitudes of microwaves in a
resonator coupled to two antennas at room temperature in the regime of weakly
overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz
the resonator simulates a chaotic quantum system. The distribution of the
elements of the scattering matrix S is not Gaussian. The Fourier coefficients
of S are used for a best fit of the autocorrelation function if S to a
theoretical expression based on random--matrix theory. We find very good
agreement below but not above 10.1 GHz
Energy level displacement of excited np states of kaonic hydrogen
We compute the energy level displacement of the excited np states of kaonic
hydrogen within the quantum field theoretic and relativistic covariant model of
strong low-energy bar-KN interactions suggested in EPJA21, 11 (2004). For the
width of the energy level of the excited 2p state of kaonic hydrogen, caused by
strong low-energy interactions, we find Gamma_2p = 2 meV. This result is
important for the theoretical analysis of the X-ray yields in kaonic hydrogen.Comment: 20 pages, no figures, Latex, new references are adde
Pions in the nuclear medium and Drell-Yan scattering
We investigate the modification of the pion-cloud in the nuclear medium and
its effect on the nuclear Drell-Yan process. The pion's in-medium self-energy
is calculated in a self-consistent delta-hole model, with particle-hole
contribution also included. Both the imaginary and real part of the pion's and
delta's self-energy are taken into account and related through a dispersion
relation assuring causality. The resulting in-medium pion light-cone momentum
distribution shows only a slight enhancement compared to the one of the free
nucleon. As a consequence the ratio of the cross-section for Drell-Yan
scattering on nuclear matter and nucleonic target is close to unity in
agreement with experiment.Comment: 33 pages, Latex with epsf, figures included, to appear in Phys. Rev.
- …