2,186 research outputs found

    Chiral Dynamics of Deeply Bound Pionic Atoms

    Get PDF
    We present and discuss a systematic calculation, based on two-loop chiral perturbation theory, of the pion-nuclear s-wave optical potential. A proper treatment of the explicit energy dependence of the off-shell pion self-energy together with (electromagnetic) gauge invariance of the Klein-Gordon equation turns out to be crucial. Accurate data for the binding energies and widths of the 1s and 2p levels in pionic ^{205}Pb and ^{207}Pb are well reproduced, and the notorious "missing repulsion" in the pion-nuclear s-wave optical potential is accounted for. The connection with the in-medium change of the pion decay constant is clarified.Comment: preprint ECT*-02-16, 4 pages, 3 figure

    Hyperon production in near threshold nucleon-nucleon collisions

    Full text link
    We study the mechanism of the associated Lambda-kaon and Sigma-kaon production in nucleon-nucleon collisions over an extended range of near threshold beam energies within an effective Lagrangian model, to understand of the new data on pp --> p Lambda K+ and pp --> p Sigma0 K+ reactions published recently by the COSY-11 collaboration. In this theory, the hyperon production proceeds via the excitation of N*(1650), N*(1710), and N*(1720) baryonic resonances. Interplay of the relative contributions of various resonances to the cross sections, is discussed as a function of the beam energy over a larger near threshold energy domain. Predictions of our model are given for the total cross sections of pp --> p Sigma+K0, pp --> n Sigma+K+, and pn --> n Lambda K+ reactions.Comment: 16 pages, 4 figures, one new table added and dicussions are updated, version accepted for publication by Physical Review

    Feynman diagrams with the effective action

    Full text link
    A derivation is given of the Feynman rules to be used in the perturbative computation of the Green's functions of a generic quantum many-body theory when the action which is being perturbed is not necessarily quadratic. Some applications are discussed.Comment: Extended revised version. RevTex, 19 pages, 10 figure

    Charged Current Neutrino Nucleus Interactions at Intermediate Energies

    Full text link
    We have developed a model to describe the interactions of neutrinos with nucleons and nuclei, focusing on the region of the quasielastic and Delta(1232) peaks. We describe neutrino nucleon collisions with a fully relativistic formalism which incorporates state-of-the-art parametrizations of the form factors for both the nucleon and the N-Delta transition. The model has then been extended to finite nuclei, taking into account nuclear effects such as Fermi motion, Pauli blocking (both within the local density approximation), nuclear binding and final state interactions. The in-medium modification of the Delta resonance due to Pauli blocking and collisional broadening have also been included. Final state interactions are implemented by means of the Boltzmann-Uehling-Uhlenbeck (BUU) coupled-channel transport model. Results for charged current inclusive cross sections and exclusive channels as pion production and nucleon knockout are presented and discussed.Comment: 26 pages, 24 figures; v2: 2 figures and discussion added, version accepted for publication in Phys. Rev.

    NASA rotor system research aircraft flight-test data report: Helicopter and compound configuration

    Get PDF
    The flight test activities of the Rotor System Research Aircraft (RSRA), NASA 740, from June 30, 1981 to August 5, 1982 are reported. Tests were conducted in both the helicopter and compound configurations. Compound tests reconfirmed the Sikorsky flight envelope except that main rotor blade bending loads reached endurance at a speed about 10 knots lower than previously. Wing incidence changes were made from 0 to 10 deg

    Influence of the pion-nucleon interaction on the collective pion flow in heavy ion reactions

    Get PDF
    We investigate the influence of the real part of the in-medium pion optical potential on the pion dynamics in intermediate energy heavy ion reactions at 1 GeV/A. For different models, i.e. a phenomenological model and the Δ\Delta--hole model, a pionic potential is extracted from the dispersion relation and used in Quantum Molecular Dynamics calculations. In addition with the inelastic scattering processes we thus take care of both, real and imaginary part of the pion optical potential. A strong influence of the real pionic potential on the pion in-plane flow is observed. In general such a potential has the tendency to reduce the anticorrelation of pion and nucleon flow in non-central collisions.Comment: 12 pages Latex, 4 PS-figure

    Level rearrangement in exotic atoms and quantum dots

    Get PDF
    A presentation and a generalisation are given of the phenomenon of level rearrangement, which occurs when an attractive long-range potential is supplemented by a short-range attractive potential of increasing strength. This problem has been discovered in condensate-matter physics and has also been studied in the physics of exotic atoms. A similar phenomenon occurs in a situation inspired by quantum dots, where a short-range interaction is added to an harmonic confinement.Comment: 12 pages, 11 figures, RevTeX

    Chaotic Scattering in the Regime of Weakly Overlapping Resonances

    Full text link
    We measure the transmission and reflection amplitudes of microwaves in a resonator coupled to two antennas at room temperature in the regime of weakly overlapping resonances and in a frequency range of 3 to 16 GHz. Below 10.1 GHz the resonator simulates a chaotic quantum system. The distribution of the elements of the scattering matrix S is not Gaussian. The Fourier coefficients of S are used for a best fit of the autocorrelation function if S to a theoretical expression based on random--matrix theory. We find very good agreement below but not above 10.1 GHz

    Pions in the nuclear medium and Drell-Yan scattering

    Get PDF
    We investigate the modification of the pion-cloud in the nuclear medium and its effect on the nuclear Drell-Yan process. The pion's in-medium self-energy is calculated in a self-consistent delta-hole model, with particle-hole contribution also included. Both the imaginary and real part of the pion's and delta's self-energy are taken into account and related through a dispersion relation assuring causality. The resulting in-medium pion light-cone momentum distribution shows only a slight enhancement compared to the one of the free nucleon. As a consequence the ratio of the cross-section for Drell-Yan scattering on nuclear matter and nucleonic target is close to unity in agreement with experiment.Comment: 33 pages, Latex with epsf, figures included, to appear in Phys. Rev.

    Energy level displacement of excited np states of kaonic hydrogen

    Full text link
    We compute the energy level displacement of the excited np states of kaonic hydrogen within the quantum field theoretic and relativistic covariant model of strong low-energy bar-KN interactions suggested in EPJA21, 11 (2004). For the width of the energy level of the excited 2p state of kaonic hydrogen, caused by strong low-energy interactions, we find Gamma_2p = 2 meV. This result is important for the theoretical analysis of the X-ray yields in kaonic hydrogen.Comment: 20 pages, no figures, Latex, new references are adde
    corecore