20 research outputs found

    Evaluation of an alternative ruxolitinib dosing regimen in patients with myelofibrosis: an open-label phase 2 study

    Full text link
    Abstract Background Ruxolitinib improves splenomegaly and symptoms in patients with intermediate-2 or high-risk myelofibrosis; however, nearly half develop grade 3/4 anemia and/or thrombocytopenia, necessitating dose reductions and/or transfusions. We report findings from an open-label phase 2 study exploring a dose-escalation strategy aimed at preserving clinical benefit while reducing hematological adverse events early in ruxolitinib treatment. Methods Patients with myelofibrosis received ruxolitinib 10 mg twice daily (BID), with incremental increases of 5 mg BID at weeks 12 and 18 for lack of efficacy (maximum, 20 mg BID). Symptom severity was measured using the Myelofibrosis Symptom Assessment Form Total Symptom Score (MFSAF TSS). Results Forty-five patients were enrolled, 68.9% of whom had a Dynamic International Prognostic Scoring System score of 1 to 2 (i.e., intermediate-1 disease risk). Median percentage change in spleen volume from baseline to week 24 was − 17.3% (≥ 10% reduction achieved by 26 patients [57.8%]), with a clear dose response. Median percentage change in MFSAF TSS from baseline at week 24 was − 45.6%, also with a dose response. The most frequent treatment-emergent adverse events were anemia (26.7%), fatigue (22.2%), and arthralgias (20.0%). Grade 3/4 anemia (20.0%) and dose decreases due to anemia (11.1%) or thrombocytopenia (6.7%) were infrequent. Conclusions A dose-escalation approach may mitigate worsening anemia during early ruxolitinib therapy in some patients with myelofibrosis. Trial registration ClinicalTrials.gov identifier, NCT01445769 . Registered September 23, 2011.https://deepblue.lib.umich.edu/bitstream/2027.42/145195/1/13045_2018_Article_642.pd

    DPC 681 and DPC 684: Potent, Selective Inhibitors of Human Immunodeficiency Virus Protease Active against Clinically Relevant Mutant Variants

    No full text
    Human immunodeficiency virus (HIV) protease inhibitors (PIs) are important components of many highly active antiretroviral therapy regimens. However, development of phenotypic and/or genotypic resistance can occur, including cross-resistance to other PIs. Development of resistance takes place because trough levels of free drug are inadequate to suppress preexisting resistant mutant variants and/or to inhibit de novo-generated resistant mutant variants. There is thus a need for new PIs, which are more potent against mutant variants of HIV and show higher levels of free drug at the trough. We have optimized a series of substituted sulfonamides and evaluated the inhibitors against laboratory strains and clinical isolates of HIV type 1 (HIV-1), including viruses with mutations in the protease gene. In addition, serum protein binding was determined to estimate total drug requirements for 90% suppression of virus replication (plasma IC(90)). Two compounds resulting from our studies, designated DPC 681 and DPC 684, are potent and selective inhibitors of HIV protease with IC(90)s for wild-type HIV-1 of 4 to 40 nM. DPC 681 and DPC 684 showed no loss in potency toward recombinant mutant HIVs with the D30N mutation and a fivefold or smaller loss in potency toward mutant variants with three to five amino acid substitutions. A panel of chimeric viruses constructed from clinical samples from patients who failed PI-containing regimens and containing 5 to 11 mutations, including positions 10, 32, 46, 47, 50, 54, 63, 71, 82, 84, and 90 had mean IC(50) values of <20 nM for DPC 681 and DPC 681, respectively. In contrast, marketed PIs had mean IC(50) values ranging from 200 nM (amprenavir) to >900 nM (nelfinavir)
    corecore